

AGUAS SUBTERRÂNEAS

do Estado do Mato Grosso do Sul

QUALIDADE DAS ÁGUAS SUBTERRÂNEAS DO ESTADO DE MATO GROSSO DO SUL

RELATÓRIO DA REDE DE MONITORAMENTO

GOVERNO DO ESTADO DO MATO GROSSO DO SUL Secretaria de Meio Ambiente, Desenvolvimento, Ciência, Tecnologia e Inovação—Semadesc Instituto de meio Ambiente de Mato Grosso do Sul-Imasul

© IMASUL/MS 2023

Diretoria de Licenciamento e Fiscalização
Gerência de Recursos Hídricos
Gerência de Controle e Fiscalização
Unidade de Monitoramento
Av. Desembargador Leão Neto do Carmo, n 6, Parque dos Poderes, 79037-100,
Campo Grande-MS.

Telefone: (67) 3318-6000

ELABORAÇÃO

Bióloga: Márcia Cristina de Alcântara Silva

Eng. Ambiental: Kharlla Yamaciro Thays Fernandes Estagiário: Luiz Henrique Cavalcanti Marques

Foto da Capa: Abismo Anhumas

Fotos do Relatório: Marcio Cabral; Gruta do Mimoso e Abismo Anhumas;

Relatório disponível na página do Imasul: http:\\www.imasul.ms.gov.br

MATO GROSSO DO SUL. Instituto de Meio Ambiente de Mato Grosso do Sul-Imasul. Diretoria de Licenciamento e Fiscalização. Relatório de Qualidade das Águas Subterrâneas do Estado de Mato Grosso do Sul-MS, 2020/2021/2022 Campo Grande-MS, 2023. 41 p.

1. Qualidade das Águas – Região Hidrográfica do Paraná - Região Hidrográfica do Paraguai – UPGs Iguatemi, Amambai, Ivinhema, Pardo, Verde, Sucuriú, Aporé, Taquari, Miranda e Apa – Relatório. I. Instituto de Meio Ambiente de Mato Grosso do Sul-MS. II. Título.

EQUIPE TÉCNICA

Gerência de Controle e Fiscalização Unidade de Monitoramento

Bióloga - Marcia Cristina de Alcântara Silva

Gerência de Recursos Hídricos

Geógrafo - Leonardo Sampaio Costa

Eng. Ambiental - Kharlla Yamaciro Thays Fernandes

Geólogo - Vinicius Medina Peixoto

Estagiário - Luiz Henrique Cavalcanti Marques (Eng. Ambiental)

GOVERNO DO ESTADO DE MATO GROSSO DO SUL

Eduardo Riedel Governador

José Carlos Barbosa Vice-Governador

Jaime Elias Verruck Secretário de Estado de Meio Ambiente, Desenvolvimento, Ciência, Tecnologia e Inovação

Walter Carneiro Junior Secretário-Adjunto de Estado de Meio Ambiente, Desenvolvimento, Ciência, Tecnologia e Inovação

André Borges Barros de Araújo Diretor-Presidente do Instituto de Meio Ambiente de Mato Grosso do Sul

Luiz Mário Ferreira

Diretor de Licenciamento e Fiscalização do Instituto de Meio Ambiente de

Mato Grosso do Sul

Leandro Camillo de Lelles Gerente de Controle e Fiscalização do Instituto de Meio Ambiente de Mato Grosso do Sul

Leonardo Sampaio Costa Gerente de Recursos Hídricos do Instituto de Meio Ambiente de Mato Grosso do Sul

Marcia Cristina de Alcântara Silva
Chefe da Unidade de Monitoramento do Instituto de Meio Ambiente de
Mato Grosso do Sul

LISTA DE FIGURAS

Mapa de Aquíferos Aflorantes Figura 1. Unidades de Planejamento e Gerenciamento - UPG Figura 2. **UPG** Iquatemi Figura 3. **UPG** Amambai Figura 4. **UPG** Ivinhema Figura 5. **UPG** Pardo Figura 6. UPG Verde Figura 7. UPG Sucuriú Figura 8. UPG Quitéria Figura 9. Figura 10. UPG Santana UPG Aporé Figura 11. **UPG** Correntes Figura 12. **UPG** Taquari Figura 13. UPG Miranda Figura 14. **UPG** Negro Figura 15. **UPG** Nabilique Figura 16. **UPG** Apa Figura 17. Extensão territorial - Região Hidrográfica Paraná Figura 18. Extensão territorial - Região Hidrográfica Paraquai Figura 19. Figura 20. Domínios Hidrogeológicos de Mato Grosso do Sul Figura 21. Sistema Aquífero Cenozóico Figura 22. Sistema Aquífero Bauru Sistema Aquífero Serra Geral Figura 23. Figura 24. Sistema Aquífero Guarani Figura 25. Sistema Aquífero Aquidauana Ponta Grossa Figura 26. Sistema Aquífero Furnas Figura 27. Sistema Aquífero Pré-Cambriano Calcários Figura 28. Sistema Aquífero Pré-Cambriano Figura 29. Pontos de Monitoramento - Sistema Aquífero x UPG Figura 30. Pontos de Monitoramento

Pontos de Monitoramento por município

Figura 31.

Figura 32. Resultado das análises

Figura 33. UPG x Ponto de monitoramento

LISTA DE QUADROS

Quadro 1.	UPG por Região Hidrográfica
Quadro 2.	UPG por Região Hidrográfica - Iguatemi
Quadro 3.	UPG por Região Hidrográfica - Amambai
Quadro 4.	UPG por Região Hidrográfica - Ivinhema
Quadro 5.	UPG por Região Hidrográfica - Pardo
Quadro 6.	UPG por Região Hidrográfica - Verde
Quadro 7.	UPG por Região Hidrográfica - Sucuriú
Quadro 8.	UPG por Região Hidrográfica - Quitéria
Quadro 9.	UPG por Região Hidrográfica - Santana
Quadro 10.	UPG por Região Hidrográfica - Aporé
Quadro 11.	UPG por Região Hidrográfica - Correntes
Quadro 12.	UPG por Região Hidrográfica - Taquari
Quadro 13.	UPG por Região Hidrográfica - Miranda
Quadro 14.	UPG por Região Hidrográfica - Negro
Quadro 15.	UPG por Região Hidrográfica - Nabileque
Quadro 16.	UPG por Região Hidrográfica - Apa
Quadro 17.	Áreas de afloramento (km²) dos Sistemas Aquíferos
	por UPG em MS - Região Hidrográfica do Paraná
Quadro 18.	Áreas de afloramento (km²) dos Sistemas Aquíferos
	por UPG em MS - Região Hidrográfica do Paraguai
Quadro 19.	Áreas de afloramento (km²) dos Sistemas Aquíferos - total
Quadro 20.	Parâmetros analisados
Quadro 21.	Síntese dos resultados de qualidade das águas subterrâneas - SAB
Quadro 22.	Síntese dos resultados de qualidade das águas subterrâneas - SASG
Quadro 23.	Síntese dos resultados de qualidade das águas subterrâneas - SAG
Quadro 24.	Síntese dos resultados de qualidade das águas subterrâneas - SAAP
Quadro 25.	Síntese dos resultados de qualidade das águas subterrâneas - SAF
Quadro 26.	Síntese dos resultados de qualidade das águas subterrâneas - SAPCO
Quadro 27.	Síntese dos resultados de qualidade das águas subterrâneas - SAP
Quadro 28.	Resultados não conformes por UPG
Quadro 29.	Totalização das análises por sistema aquífero entre 2020 a 2022
Quadro 30.	Totalização dos parâmetros por sistema aquífero entre 2020 a 2022
Quadro 31.	Parâmetros com resultados não conformes entre 2020 a 2022
Quadro 32.	Indicador de Potabilidade das Águas Subterrâneas – Ipas por UPG

Quadro 33. Indicador de Potabilidade das Águas Subterrâneas – Ipas por sistema

aquífero

APRESENTAÇÃO

"O monitoramento é uma ferramenta importante para garantir a disponibilidade de água em condições adequadas para atender aos usos múltiplos, incorporando as bases do desenvolvimento sustentável."

O monitoramento da qualidade da água é um processo essencial à implementação dos instrumentos de gestão das águas, pois gera informações estratégicas que permite o direcionamento das decisões, o acompanhamento das medidas efetivadas, e a atualização dos bancos de dados.

Com base na Lei Estadual n. 2.406, de 29 de janeiro de 2002, que instituiu a Política Estadual de Recursos Hídricos do Mato Grosso do Sul, cabe ao Imasul, executar pesquisas, levantamentos técnicos e ações de monitoramento visando à manutenção da qualidade e da quantidade dos recursos hídricos superficiais e subterrâneos, a fim de atender aos atuais usuários e as futuras gerações.

A análise contínua e abrangente da situação real das águas subterrâneas ao longo do espaço e do tempo representa um dos desafios na investigação dos recursos hídricos. Destaca-se a extrema importância das águas subterrâneas para a segurança hídrica, tendo em vista que, por estarem escondidas no subterrâneo, o controle, o diagnóstico e a consolidação de políticas públicas específicas são dificultados. Além disso, o desconhecimento sobre sua importância social, ambiental e econômica, as deixam vulneráveis ao mau uso e à

contaminação.

Em 2021 com a publicação do relatório Qualidade das Águas Subterrâneas do Estado de Mato Grosso Do Sul - Relatório De Implantação da Rede de Monitoramento, o Imasul deu início ao monitoramento da qualidade das águas subterrâneas. A Rede de Monitoramento começou com 69 pontos, cobrindo os oito aquiferos existentes no Estado.

O presente Relatório apresenta a avaliação e ampliação da Rede de Monitoramento da Qualidade das Águas Subterrâneas do Mato Grosso do Sul no período de 2020 a 2022, a partir dos resultados das análises constantes de automonitoramento de 86 poços de produção.

Além de disponibilizar à sociedade em geral mais um diagnóstico dos recursos hídricos sul-mato-grossenses, este trabalho é um importante instrumento para a gestão de recursos hídricos, subsidiando o planejamento, a outorga, o licenciamento, e a fiscalização, na busca pela manutenção da qualidade ambiental no Mato Grosso do Sul.

ANDRÉ BORGES BARROS DE ARAÚJO Diretor-presidente Imasul

1 INTRODUÇÃO

As águas subterrâneas são formadas pelo excedente das águas das chuvas que percorrem camadas abaixo da superfície do solo e preenchem os espaços vazios entre as rochas. Essas formações geológicas permeáveis são chamadas de aquíferos e formam uma reserva de água no subsolo, que, abastecida pela chuva, funciona como uma espécie de caixa d'água que alimenta os rios (ANA).

No Brasil, os aquíferos (figura 1) contribuem para que boa parte dos rios brasileiros sejam perenes, ou seja, não sequem no período da estiagem. Por serem relativamente abundantes, constituem-se em uma parcela significativa de água potável, que pode ser utilizada para consumo humano, uso industrial, agrícola, e para outros fins.

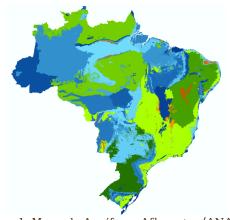


Figura 1: Mapa de Aquíferos Aflorantes (ANA, 2010)

Por representarem um dos mais valiosos recursos naturais de um país, sendo importante para o atendimento atual e futuro das diversas formas de uso, o acompanhamento das condições dos recursos hídricos subterrâneos por meio do monitoramento é muito importante. O monitoramento é um procedimento contínuo para obtenção de dados que

permitem a avaliação da qualidade e da quantidade das águas subterrâneas.

O Estado de Mato Grosso do Sul é um dos estados mais ricos em água, pois é detentor de uma das maiores reservas de água doce superficial e também de expressiva reserva de água subterrânea. Este status é um privilégio que eleva a responsabilidade do Estado na proteção dos mananciais, na garantia das funções ecológicas, econômicas e sociais dos recursos hídricos, a partir da aplicação de um modelo sustentável de desenvolvimento de seus usos múltiplos.

A geração de dados e informações sobre a qualidade dos recursos hídricos de domínio do Estado, bem como sua publicação sob a forma de Relatórios, é uma atribuição prevista na Política Estadual de Recursos Hídricos (Lei Estadual n. 2.406, de 2002), assim como, o acompanhamento da qualidade da água por meio dos relatórios de automonitoramento exigidos nos processos de outorga dos poços perfurados no Estado, para as diversas finalidades de uso.

Dessa forma, 0 monitoramento da qualidade das águas subterrâneas instituído no Mato Grosso do Sul por meio da criação de uma Rede de Monitoramento composta por poços tubulares pertencentes concessionárias de serviços de utilizados saneamento, e para abastecimento público.

O presente Relatório faz a avaliação dos dados das análises laboratoriais referentes aos anos de 2020, 2021 e 2022 realizadas pelas empresas de saneamento, e dá continuidade ao Programa de Monitoramento da Qualidade das Águas Subterrâneas do Estado de Mato Grosso do Sul.

Os resultados obtidos no monitoramento, ao serem divulgados e disponibilizados, devem atingir o objetivo de orientar as tomadas de decisão quanto ao uso e gerenciamento da água subterrânea por gestores públicos, e levar informação a entidades conservacionistas, pesquisadores, de áqua, profissionais usuários estudantes envolvidos com recursos hídricos e questões ambientais, e demais interessados.

GESTÃO DAS ÁGUAS 2 SUBTERRÂNEAS NO MATO GROSSO DO SUL

De acordo com a Constituição Federal, a gestão e a autorização para o uso das águas subterrâneas são de competência dos Estados. A partir da promulgação da Lei Estadual n. 2.406, de 2002, o Mato Grosso do Sul instituiu sua Política Estadual de Recursos Hídricos e criou Sistema Estadual de Gerenciamento dos Recursos Hídricos seguindo os mesmos princípios e diretrizes estabelecidas na Política Nacional de Recursos Hídricos (Lei Federal n. 9.433, de 8 de janeiro de 1997).

Dentre os aspectos mais relevantes desses princípios, ressalta-se o conceito de que a água é um recurso natural limitado, dotado de valor econômico, e se constitui em um bem de domínio público que deve sempre proporcionar o seu uso múltiplo.

No contexto da Lei Estadual de Recursos Hídricos, a bacia hidrográfica passou a ser a unidade territorial de implementação da Política Estadual dos Recursos Hídricos e objeto da atuação do Sistema Estadual do Gerenciamento dos Recursos Hídricos. O

Conselho Estadual de Recursos Hídricos se torna o órgão de instância superior desse Sistema, regulamentado pelo Decreto n. 11.621, de 1 de junho de 2004 e reorganizado pelo Decreto n. 15.079, de 9 de outubro de 2018, de caráter normativo, deliberativo e consultivo. A composição do Conselho assegura a participação paritária dentre membros do poder público, representantes de organizações civis e de usuários dos recursos hídricos.

A Política Estadual dos Recursos Hídricos, traz ainda, como uma de suas diretrizes, "a integração da gestão das regiões hidrográficas com todos os processos do ciclo hidrológico, águas superficiais e subterrâneas em seus aspectos de qualidade e quantidade".

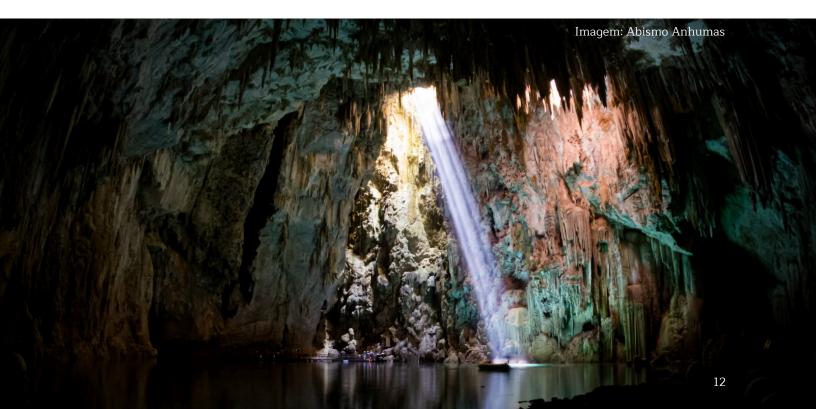
Assim, а partir dos instrumentos estabelecidos pela Política Estadual dos Recursos Hídricos, o Instituto de Meio Ambiente de Mato Grosso do Sul (Imasul), órgão gestor estadual, passou a dispor do instrumento da outorga para gerenciar o uso dos recursos hídricos de domínio do Estado, incluindo as captações subterrâneas. Além disso, o Imasul vem desde 1994, gerando dados primários por meio de seu Programa de Monitoramento da Qualidade das Águas Superficiais, tendo como unidade de planejamento, as UPG's (Unidades de Planejamento Gerenciamento de Mato Grosso do Sul), definidas no Plano Estadual de Recursos Hídricos (Semac, Imasul, 2010).

Dessa forma, visando realizar cada vez mais a gestão integrada e sustentável dos recursos hídricos, foi implementada no Estado, em 2021, a Rede Estadual de Monitoramento da Qualidade das Águas Subterrâneas, com vistas a gerar dados e informações para dar suporte ao planejamento e promoção de ações efetivas direcionadas à preservação da qualidade e da quantidade das águas do Mato Grosso do

Sul.

Os resultados do monitoramento permanente e contínuo irão propiciar a além médio longo prazos, da caracterização da qualidade natural das águas subterrâneas, a identificação de impactos em decorrência da exploração ou das formas de uso e ocupação dos terrenos, e a estimativa da disponibilidade dos hídricos subterrâneos, dentro recursos outras informações.

2.1 UNIDADE DE PLANEJAMENTO E GERENCIAMENTO - UPG


A partir da publicação em 2010, do Plano Estadual de Recursos Hídricos de Mato Grosso do Sul (PERH-MS), foram definidas as Unidades de Planejamento e Gerenciamento de Mato Grosso do Sul (UPGs), as quais passaram a corresponder respectivamente a cada uma das sub-bacias hidrográficas que vinham sendo adotadas pelo Estado (MATO GROSSO DO SUL, 1990). No total são 15 UPGs, cujos nomes guardam correspondência com a toponímia de seu rio principal e apresentam um

número de código representado pelo algarismo romano I e II conforme situadas, respectivamente, nas Regiões Hidrográficas do Paraná ou do Paraguai, seguida de algarismo arábico, de 1 a 9 ou de 1 a 6, conforme o Quadro 1.

Quadro 1- UPG por Região Hidrográfica

I. Região Hidrográfica do	II. Região Hidrográfica do
Paraná	Paraguai
I.1 UPG Iguatemi	II.1 UPG Correntes
I.2 UPG Amambai	II.2 UPG Taquari
I.3 UPG Ivinhema	II.3 UPG Miranda
I.4 UPG Pardo	II.4 UPG Negro
I.5 UPG Verde	II.5 UPG Nabileque
I.6 UPG Sucuriú	II.6 UPG Apa
I.7 UPG Quitéria	
I.8 UPG Santana	
I.9 UPG Aporé	

Nas Figura 2 a 17 visualiza-se as 15 UPGs e nos quadros 2 a 16 a distribuição das áreas de seus respectivos municípios. Para a composição base cartográfica da representativa das UPGs, foram editados os das áreas ocupadas polígonos municípios em cada UPG usando-se a base Malha Municipal Digital, escala 1:1.000.000, do IBGE (2005), gerando-se as áreas em km2 e o percentual ocupado por município em relação às áreas de cada UPG.

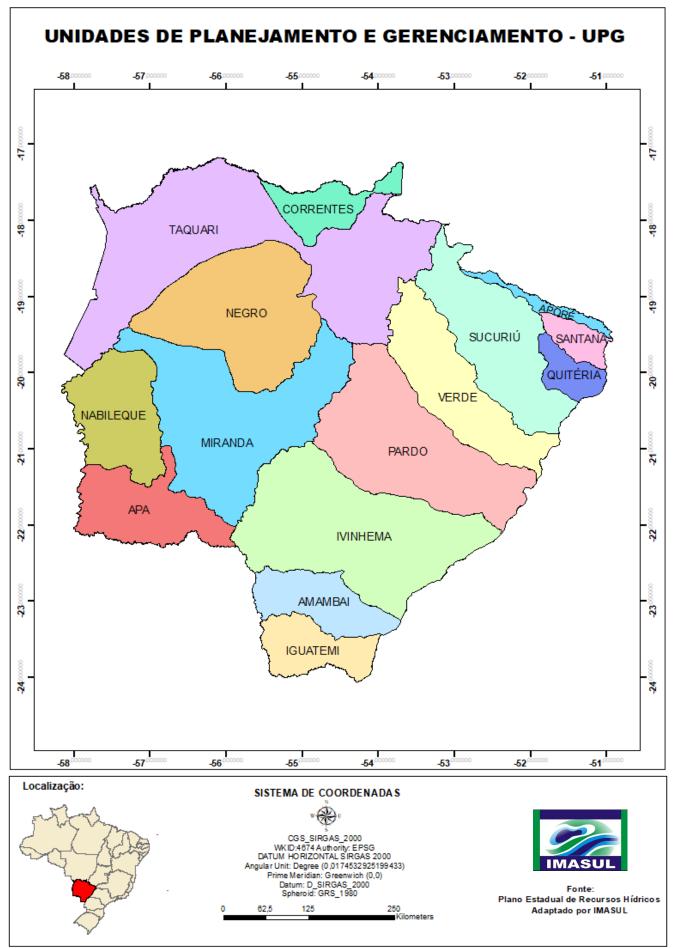


Figura 2- Unidades de Planejamento e Gerenciamento - UPG

DISTRIBUIÇÃO DAS ÁREAS DOS MUNICÍPIOS POR UPG NA REGIÃO HIDROGRÁFICA DO PARANÁ

*Municípios com inserção parcial, porém com sede dentro da UPG. Áreas intermunicipais em litígio não são computadas no cálculo dos percentagens dos territórios municipais nas UPGs.

I.1 UPG Iguatemi

Quadro 2 - UPG por Região Hidrográfica - Iguatemi

UPG/Município	Área (km²)	% na UPG
Amambai	1.307,717	31,12
Coronel Sapucaia	785,009	76,3
* Eldorado	1.017,788	100
Iguatemi*	1.350,805	45,84
Itaquiraí	321,883	15,6
Japorã	419,804	100
Mundo Novo	479,327	100
Paranhos	1.302,138	100
Sete Quedas	825,925	100
Tacuru	1.785,315	100
Total da UPG	9.595,823	

Figura 3 - UPG Iguatemi

I.2 UPG Amambai

Quadro 3 - UPG por Região Hidrográfica - Amambai

UPG/Município	Área (km²)	% na UPG
Amambai*	2.894,581	68,88
Aral Moreira	1.656,185	100
Caarapó	659,395	31,55
Coronel Sapucaia	243,889	23,7
Iguatemi	1.595,872	54,16
Itaquiraí*	1.741,993	84,4
Juti*	905,786	57,16
Laguna Carapã	1.001,585	57,77
Naviraí*	999,845	31,31
Ponta Porã	249,668	4,69
Total da UPG	11.949,013	

Figura 4 - UPG Amambai

I.3 UPG Ivinhema

Quadro 4 - UPG por Região Hidrográfica - Ivinhema

UPG/Município	Área (km²)	% na UPG
Anaurilândia	3.395,540	100
Angélica	1.273,199	100
Antônio João	469,137	41,02
Batayporã	1.828,214	100
Caarapó*	1.430,311	68,45
Deodápolis	831,263	100
Douradina	280,689	100
Dourados	4.086,387	100
Fátima do Sul	315,237	100
Glória de Dourados	491,758	100
Itaporã	1.322,00	100
Ivinhema	2.009,887	100
Jatei	1.927,966	100
Juti	678,813	42,84
Laguna Carapã*	732,260	42,23
Maracaju*	4.101,701	77,41
Naviraí *	2.193,994	68,69
Nova Alvorada do Sul*	1.508,264	37,53
Nova Andradina*	2.971,124	62,21
Novo Horizonte do Sul	849,117	100
Ponta Porã*	4.218,275	79,16
Rio Brilhante	3.987,53	100
Sidrolândia*	2.582,858	48,86
Taquarussu	1.041,121	100
Vicentina	310,216	100
Total da UPG	44.837,155	

Figura 5 - UPG Ivinhema

I.4 UPG Pardo

Quadro 5 - UPG por Região Hidrográfica - Pardo

UPG/Município	Área (km²)	% na UPG
Bandeirantes*	1.973,405	63,34
Bataguassu	2.416,718	100
Brasilândia	1.540,304	26,53
Camapuã	76,435	2,84
Campo Grande*	7.552,362	93,28
Jaraguari*	2.041,734	70,09
Nova Alvorada do Sul	2.510,945	62,47
Nova Andradina	1.804,972	37,79
Ribas do Rio Pardo*	11.911,262	68,82
Santa Rita do Pardo	6.141,615	100
Sidrolândia	1.349,773	25,53
Total da UPG	39.419,362	

Figura 6 - UPG Pardo

I.5 UPG Verde

Quadro 6 - UPG por Região Hidrográfica - Verde

UPG/Município	Área (km²)	% na UPG
Água Clara*	7.804,075	70,75
Brasilândia*	4.266,588	73,47
Camapuã	2.839,934	45,78
Costa Rica	140,631	2,46
Figueirão	363,762	7,99
Ribas do Rio Pardo	5.397,456	31,18
Três Lagoas	3.371,684	33,04
Total da UPG	24.183,897	

Figura 7 - UPG Verde

I.6 UPG Sucuriú

Quadro 7 - UPG por Região Hidrográfica - Sucuriú

UPG/Município	Área (km²)	% na UPG
Água Clara	3.226,998	29,25
Cassilândia	2.288,689	62,71
Chapadão do Sul*	3.714,492	96,46
Costa Rica*	4.562,509	79,72
Figueirão	191,571	4,21
Inocência*	4.570,322	79,12
Selvíria*	2.533,193	77,74
Três Lagoas*	6.834,686	66,96
Total da UPG	27.192,974	

Figura 8 - UPG Sucuriú

I.7 UPG Quitéria

Quadro 8 - UPG por Região Hidrográfica - Quitéria

JPG/Município	Área (km²)	% na UPG
Inocência	1.205,939	20,88
Paranaíba	350,837	6,49
Selvíria	725,460	22,26
Total da UPG	5.372,096	

Figura 9 - UPG Quitéria

I.8 UPG Santana

Quadro 9 - UPG por Região Hidrográfica - Santana

UPG/Município	Área (km²)	% na UPG
Aparecida do Taboado	388,831	14,14
Paranaíba*	3.792,654	70,2
Total da UPG	4.181,619	

Figura 10 - UPG Santana

I.9 UPG Aporé

Quadro 10 - UPG por Região Hidrográfica - Aporé

UPG/Município	Área (km²)	% na UPG
Cassilândia	1.361,141	37,29
Chapadão do Sul	136,201	3,54
Paranaíba	1.259,287	23,31
Total da UPG	2.756,724	

Figura 11 - UPG Aporé

DISTRIBUIÇÃO DAS ÁREAS DOS MUNICÍPIOS POR UPG NA REGIÃO HIDROGRÁFICA DO PARAGUAI

II.1 UPG Correntes

Quadro 11 - UPG por Região Hidrográfica - Correntes

UPG/Município	Área (km²)	% na UPG
Corumbá	1.500,387	2,31
Coxim	1.660,792	25,9
Pedro Gomes*	1.723,445	47,2
Sonora	4.075,437	100
Total da UPG	8.959,978	

Figura 12 - UPG Correntes

II.2 UPG Taquari

Quadro 12 - UPG por Região Hidrográfica - Taquari

UPG/Município	Área (km²)	% na UPG
Alcinópolis	4.399,676	100
Camapuã*	3.187,471	51,38
Corumbá*	38.965,025	59,98
Costa Rica	1.019,694	17,82
Coxim*	4.750,760	74,1
Figueirão*	3.999,259	87,81
Ladário	342,509	100
Pedro Gomes	1.927,726	52,8
Rio Verde de MT*	2.822,852	34,63
São Gabriel do Oeste*	3.420,338	88,5
Total da UPG	64.834,656	

Figura 13 - UPG Taquari

II.3 UPG Miranda

Quadro 13 - UPG por Região Hidrográfica - Miranda

Quadro 15 Of a por Regiac	rindrogranca .	viii aiida
UPG/Município	Área (km²)	% na UPG
Anastácio	2.949,206	100
Aquidauana*	5.234,937	30,87
Bandeirantes	1.142,109	36,66
Bodoquena	2.507,244	100
Bonito*	4.622,261	93,68
Campo Grande	543,689	6,72
Corguinho*	1.183,539	44,82
Corumbá	1.946,675	3
Dois Irmãos do Buriti*	2.217,903	94,6

Guia Lopes da Lagun	1.210,472	100
a Jaraguari	871,266	29,91
Jardim*	2.020,494	91,77
Maracaju	1.197,139	22,59
Miranda*	5.192,560	94,78
Nioaque	3.923,798	100
Ponta Porã	697,049	13,08
Rochedo	1.560,647	100
São Gabriel do Oeste	444,521	11,5
Sidrolândia	1.353,859	25,61
Terenos	2.841,240	100
Total da UPG	43.663,571	

Figura 14 - UPG Miranda

II.4 UPG Negro

Quadro 14 - UPG por Região Hidrográfica - Negro

UPG/Município	Área (km²)	% na UPG
Aquidauana	11.723,559	69,13
Corguinho	1.457,275	55,18
Corumbá	14.402,801	22,17
Dois Irmãos do Buriti	126,708	5,4
Rio Negro	1.807,665	100
Rio Verde de MT	5.329,123	65,37
Total da UPG	34.845,653	

Figura 15 - UPG Negro

II.5 UPG Nabileque

Quadro 15 - UPG por Região Hidrográfica - Nabileque

UPG/Município	Área (km²)	% na UPG
Corumbá	8.145,975	12,54
Miranda	286,067	5,22
Porto Murtinho	9.883,935	55,73
Total da UPG	18.315,750	

Figura 16 - UPG Nabilique

II.6 UPG Apa

Quadro 16 - UPG por Região Hidrográfica - Apa

UPG/Município	Área (km²)	% na UPG
Antônio João*	674,613	58,98
Bela Vista	4.895,543	100
Bonito	312,057	6,32
Caracol	2.938,675	100
Jardim	181,231	8,23
Ponta Porã	163,629	3,07
Porto Murtinho*	7.850,990	44,27
Total da UPG	17.016,693	

Figura 17 - UPG Apa

Área Total do Estado 357124,964 km²

Fonte das áreas municipais: IBGE, Resolução n. 5, de 10 de outubro de 2002.

3 RECURSO HÍDRICOS DE MATO GROSSO DO SUL

3.1 ÁGUAS SUPERFICIAIS

No território de Mato Grosso do Sul configuram-se duas das 12 Regiões Hidrográficas do Brasil, conforme definidas pela Resolução do CNRH n. 32, de 15 de outubro de 2003: a Bacia Hidrográfica do Paraquai, constituída pela Bacia Hidrográfica do rio Paraquai, a oeste e a Bacia Hidrográfica do Paraná, rio constituída pela Região Hidrográfica do rio Paraná, a leste. Esta configuração delimita claramente no Estado o divisor de águas que se estende de nordeste a sudoeste.

A Região Hidrográfica do Paraná ocupa a área total de 169.488,663 km², o que representa aproximadamente 47,46% da área do Estado. Nesta Região destacam-se os rios Aporé, Sucuriú, Verde, Pardo, Ivinhema, Amambai e Iquatemi, à margem direita do rio Paraná. O rio Paraná tem principais formadores Paranaíba e Grande, no tríplice limite entre estados de São Paulo, os Minas Gerais e Mato Grosso do Sul.

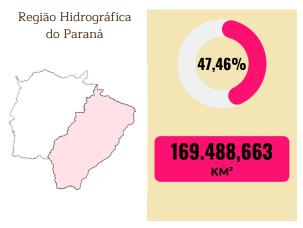


Figura 18 - Extensão territorial - Região Hidrográfica Paraná

A Região Hidrográfica do Paraguai em Mato Grosso do Sul, por sua vez, ocupa a área de 187.636,301 km² (figura 19), que representa 52,54% da área total do Estado. Destacamse nesta Região os rios Taquari, Miranda, Negro e Apa, à margem esquerda do rio Paraguai. Nesta Região, que compreende o Pantanal Mato-grossense, a dinâmica das águas superficiais está vinculada a fatores como declividade e descarga dos principais rios que atravessam a área, aliados ao regime climático, natureza dos solos e suporte geológico." (BRASIL, MME, 1982).

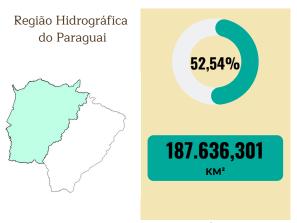


Figura 19 - Extensão Territorial -Região Hidrográfica Paraguai

Configuram-se duas partes principais: uma superior, acima da cota de 200m (planalto), cuja declividade dos rios é superior a 6 cm/km; e uma inferior, na cota média nível de 100m (planície), onde a declividade é de 1 a 3 cm/km, o que ocasiona a inundação de grandes áreas (UFRGS, 2002). O Pantanal Mato-grossense, juntamente com sua porção situada em Mato Grosso, representa a maior planície contínua de inundação do planeta.

A complexa drenagem da planície pantaneira é constituída por pequenos cursos d'água (córregos), linhas de drenagem de declividade moderada, mas sem canal bem desenvolvido (vazantes), vazantes com seção definida (corixos e corixões), lagos e lagoas (baías) e lagoas ou antigos meandros marginais.

Segundo Rondon (1936, citado por BRASIL, 1982), "Esta situação específica da dinâmica fluvial ocorre de forma alterada em relação às duas áreas da região hidrográfica, na parte sul elas estão apenas iniciando; e quando chegam a atingir o máximo na parte sul, na parte norte já começam abaixar o nível."

Ao se comparar as duas Regiões, tem-se que o menor coeficiente de escoamento ocorre bacia do rio Paraquai na devido, principalmente, à baixa capacidade drenagem do Pantanal, que recebe as vazões do planalto da bacia e retém grande parte dos volumes de água diminuindo as vazões para jusante, o que caracteriza uma variabilidade sazonal significativa a ser considerada quando da disponibilidade hídrica.

3.2 ÁGUAS SUBTERRÂNEAS

As unidades hidrogeológicas ou sistemas aquíferos do Estado de Mato Grosso do Sul são identificados por dois grandes grupos de rochas, as sedimentares, definindo os aquíferos porosos e as ígneas-metamórficas, que constituem os aquíferos fraturados ou de fissuras. Os aquíferos porosos ocorremnas bacias sedimentares do Paraná

e do Pantanal e os fraturados, no embasamento cristalino e em uma formação da Região Hidrográfica do Paraná.

Consideram-se oito unidades aquíferas para o Estado de Mato Grosso do Sul (Figura 20), discriminadas a seguir:

Sistema Aquífero Cenozóico/SAC

Sistema Aquífero Bauru/SAB

Sistema Aquífero Serra Geral/SASG

Sistema Aquífero Guarani/SAG

Sistema Aquifero Aquidauana-Ponta Grossa/SAAP

Sistema Aquífero Furnas/SAF

Sistema Aquífero Pré-cambriano Calcários/SAPCC

Sistema Aquífero Pré-Cambriano/SAP

Os Quadros 17 a 19 apresentam as áreas de afloramento dos sistemas aquíferos nas UPGs sul-mato-grossenses.

Quadro 17 - Áreas de afloramento (km²) dos Sistemas Aquíferos por UPG em Mato Grosso do Sul, na Região Hidrográfica do Paraná

	Sistema Aquífero											
UPG	SAC	SAB	SASG	SAG	SAAP	SAF	SAPCC	SAP				
			Reg	ião Hidrográ	fica do Parai	ná						
I.1 .lguatemi	44,300	9408,5	437,9	-	-	-	-	-				
I.2 Amambai	251,000	6922,2	4827,3	-	-	-	-	-				
I.3 Ivinhema	2.058,600	21334,4	23160,3	-	-	-	-	-				
I.4 Pardo	4,900	31829,5	6458,1	-	-	-	-	-				
I.5 Verde	3,600	23206,1	700,3	0,900	_	-	-	-				
I.6 Sucuriú	152,000	24116,8	2578,5	17,400	_	-	-	-				
I.7 Quitéria	-	4849,7	109,9	-	-	-	-	-				
I.8 Santana	-	3916,9	269,6	-	-	14,1	-	-				
I.9 Aporé	3,100	2320,1	336	111,100	-	0,1	-	-				
Subtotal	2.517,400	127904,3	38877,8	129,400	-	14,2	-	-				

Quadro 18 - Áreas de afloramento (km²) dos Sistemas Aquíferos por UPG em Mato Grosso do Sul, na Região Hidrográfica do Paraguai

	Sistema Aquífero									
UPG	SAC	SAB	SASG	SAG	SAAP	SAF	SAPCC	SAP		
			Região	o Hidrográfica d	lo Paraguai					
II.1 Correntes	3.261,900	3,4	-	1.785,800	1328,3	2340,4	-	106,7		
II.2 Taquari	37.784,800	6378,9	443,1	12.492,500	3256,7	1716,9	800,700	1026,9		
II.3 Miranda	7.659,900	257,1	10460,9	6.793,800	7068,8	92,1	3.481,400	7423,9		
II.4 Negro	28.918,700	-	-	230,100	2756,1	2347,1	-	633,8		
II.5 Nabileque	11.897,100	-	-	-	-	-	339,300	6565,1		
II.6 Apa	4.877,600	6,4	694,4	775,600	2504,4	-	1.853,000	6853,4		
Subtotal	94.399,900	6645,8	11598,4	22.077,900	16914,3	6496,4	6.474,400	22609,8		

Quadro 19 - Áreas de afloramento (km²) dos Sistemas Aquíferos - total

Total				Aquífero	Aquífero					
rotar	SAC	SAB	SASG	SAG	SAAP	SAF	SAPCC	SAP		
	96.917,20	134.550,00	50.476,30	22.207,30	16.914,30	6.510,70	6.474,40	22.609,80		

Em termos de distribuição percentual em área, os Aquíferos Bauru e Cenozóico são os de maior área de afloramento, ambos aquíferos livres, com respectivamente 37% e 27% da área total de Mato Grosso do Sul.

A distribuição na Região Hidrográfica do Paraná mostra a importância dos Aquíferos Bauru e Serra Geral, com 75% e 24% respectivamente.

No entanto, há que se considerar a relevância do Aquífero Guarani, embora com pequena proporção de área de afloramento, apenas 0,1% da área dessa Região Hidrográfica. Esse aquífero encontra-se confinado, abaixo dos aquíferos Bauru e Serra Geral e, portanto, com área de afloramento muito inferior à área que se encontra confinado. Esta área corresponde ao somatório das áreas de afloramento dos Aquíferos Bauru e Serra Geral e apresenta grande reserva hídrica.

A Região Hidrográfica do Paraguai caracteriza-se por maior diversidade de afloramentos de aquíferos, sendo o de maior expressão em área o Aquífero Cenozóico, com 51% da área desta Região Hidrográfica, seguido pelo Aquífero Pré Cambriano, com 12%, pelos aquíferos

Guarani e Pré-cambriano Calcários, com 12%, o Aquífero Aquidauana Ponta Grossa, com 9%, o Aquífero Serra Geral, com 6% e os aguíferos Furnas e Bauru, com aproximadamente 3% da área. É importante ressaltar que nesta Região Hidrográfica, esses aquíferos não encontram sobrepostos.

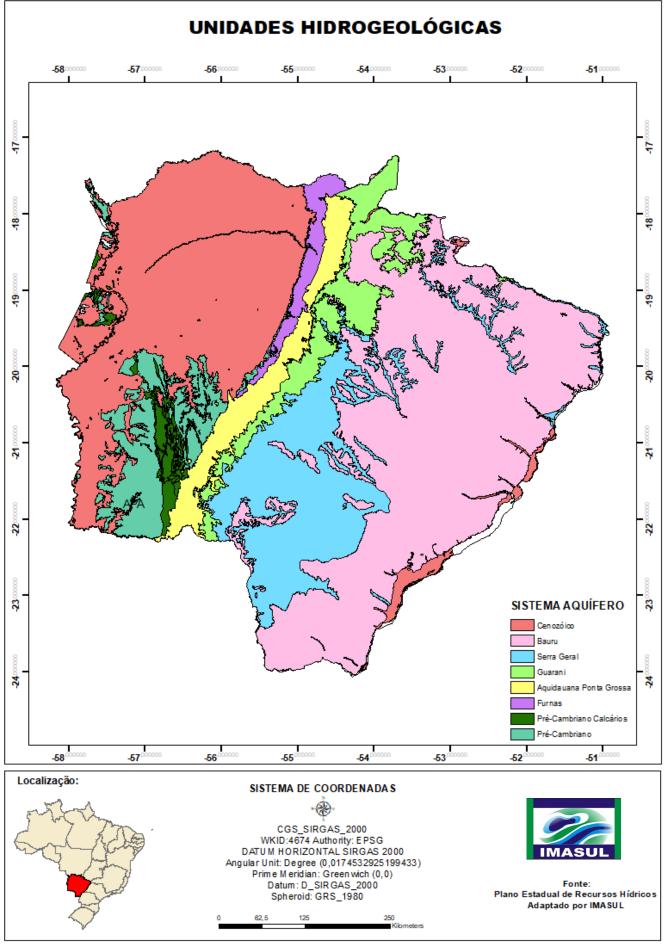


Figura 20 - Domínios Hidrogeológicos de Mato Grosso do Sul

Sistema Aquífero Cenozóico

O Sistema Aguífero Cenozóico, chamado Pantanal em alguns estudos (ANA, 2004; BRASIL, 2006a e 2006b), é um aquífero poroso e livre; compreende principalmente os sedimentos da Região Hidrográfica do Pantanal. predominando sedimentos arenosos finos, pouco compactados, e depósitos aluvionares recentes. Ocorre em todas as UPGs da Região Hidrográfica do Paraguai, sendo mais expressivo nas UPGs Taguari, Negro e Nabilegue. Na Região Hidrográfica do Paraná, é formado por sedimentos fluviais do rio Paraná, com distribuição restrita à margem direita, em faixa, de Três Lagoas a Bataguassu, ao norte, e de Batayporã a Itaquiraí, ao sul.

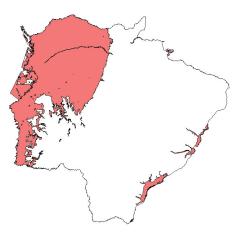


Figura 21 - Sistema Aquífero Cenozóico

Sistema Aquífero Bauru

É constituído por rochas sedimentares da Região Hidrográfica do Paraná, dos grupos Bauru (Formações Vale do Rio do Peixe e Marília) e Caiuá (Formação Santo Anastácio), e pelas Coberturas Detrito-Lateríticas, principalmente na região de Sonora e São Gabriel do Oeste.

É um aquífero livre, com afloramento em

grande parte do Estado, principalmente na Região Hidrográfica do Paraná, onde aflora em todas as UPGs (praticamente toda a área das UPGs Iguatemi, Verde, Sucuriú, Quitéria, Santana e Aporé, exceto nos vales de algumas drenagens, onde ocorrem afloramentos do sistema Aquífero Serra Representa Geral). um dos mais importantes aquíferos do Estado, sendo responsável pelo escoamento regional das águas subterrâneas para importantes rios (Pardo, Verde e Sucuriú, nas respectivas UPGs, e em rios menores das UPGs Quitéria e Santana).

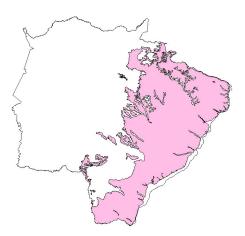


Figura 22 - Sistema Aquífero Bauru

Sistema Aquífero Serra Geral

Formado essencialmente pelos basaltos e diabásios da Formação Serra Geral, do grupo São Bento, constituindo um aquífero fraturado, livre. Ocorre no centro-sul do Estado, no limite entre as Regiões Hidrográficas do Paraguai e Paraná, com maior área de afloramento nesta última. Destacam-se as UPGs Ivinhema e Amambai, embora este seja um importante Aquífero de Campo Grande, na UPG Pardo.

Na Região Hidrográfica do Paraguai, o sistema aquífero Serra Geral aflora nas UPGs Miranda e Apa, no extremo leste de ambas as unidades. Várias cidades

importantes do Estado têm como fonte de água para abastecimento público, principal ou secundária, poços perfurados neste Aquífero, como Campo Grande, Dourados, Ponta Porã, Caarapó, Sidrolândia, entre outras.

Figura 23 - Sistema Aquífero Serra Geral

Sistema Aquífero Guarani

O Sistema Aquífero Guarani é um dos maiores aquíferos da América do Sul, exibe limites transfronteiriços entre os estados de Mato Grosso do Sul, Goiás, São Paulo, Paraná, Santa Catarina e Rio Grande do Sul, no Brasil, e os países Uruguai, Paraguai e Argentina. Encontram-se em Mato Grosso do Sul, 18% da área total e 25% da área brasileira do Aquífero. É formado por rochas arenosas da Região Hidrográfica do Paraná (Grupo Rosário do Sul e Pirambóia no Brasil, e Buena Vista no Uruguai, Formações Botucatu, no Brasil, Missiones, no Paraguai, e Tacuarembó, no Uruquai e Argentina) (GASTMANS, 2007). espessura do pacote de rochas deste Sistema Aquífero é da ordem de 800 metros (ARAÚJO et al. 1995), sendo superiores a 600m no Estado de Mato Grosso do Sul, próximo a Campo Grande. É importante manancial abastecimento de cidades do Estado, tais como Campo Grande e São Gabriel do Oeste.

Figura 24 - Sistema Aquífero Guarani

Sistema Aquífero Aquidauana-Ponta Grossa

A formação Aquidauana-Ponta Grossa, consideram-se as rochas sedimentares das Formações Aquidauana e Ponta Grossa, embora de idades diferentes, como um sistema Aquífero, por suas propriedades de armazenamento de água semelhantes no Estado. Este Sistema ocorre aflorando nas UPGs Correntes, Taquari, Negro, Miranda e Apa, abastecendo cidades de pequeno porte como Rochedo, Corguinho, Jardim, Guia Lopes da Laguna, Bela Vista, Aquidauana, Anastácio com maior demanda de água. Em direção a leste, em toda a Região Hidrográfica do Paraná ocorre confinado abaixo do Aquífero Guarani.

Figura 25 - Sistema Aquífero Aquidauana Ponta Grossa

Sistema Aquífero Furnas

O Sistema Aquífero Furnas é um aquífero poroso, livre, composto pelas rochas da Formação Furnas, nas UPGs Correntes, Taguari, Negro e Miranda e confinado a leste, abaixo do Aquífero Aquidauana-Ponta Grossa. Predominam arenitos feldspáticos, às vezes micáceos e com impregnações de óxido de ferro. com intercalações descontínuas de conglomerados (na base). Os conglomerados ocorrem em lentes e são, em geral, oligomíticos, com arcabouço de seixos de quartzo com raros fragmentos de rochas do Grupo Cuiabá. Este é um aquífero importante para OS municípios Anastácio, Aquidauana e Jardim e Coxim e Pedro Gomes.

Figura 26 - Sistema Aquífero Furnas

Sistema Aquífero Pré-Cambriano Calcários

Esse sistema é formado pelas rochas calcárias dos Grupos Corumbá e Cuiabá. É um importante Aquífero para o município de Bonito, principalmente, e, secundariamente, em Corumbá. Ocorre nas UPGs Apa, Miranda, Nabileque e Taquari, sendo mais expressivo nas duas primeiras.

Caracteriza-se por porosidade bastante peculiar, formada pela dissolução das rochas calcárias, a porosidade cárstica. É um sistema aquífero importante de dois municípios onde se concentram as atividades de turismo, Bonito e Corumbá.

Figura 27 - Sistema Aquífero Pré-Cambriano Calcários

Sistema Aquífero Pré-Cambriano

Engloba uma grande variedade de rochas metas--sedimentares de graus metamórficos distintos, metavulcânicas, granítico-gnássicas. Contudo, consiste em um sistema aquífero com o armazenamento de água pelo padrão de fraturamento dessas rochas. Ocorre principalmente nas UPGs Miranda e Apa, e subordinadamente, nas UPG Taquari, próximo à Corumbá, e na UPG Nabileque.

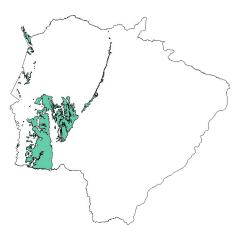


Figura 28 - Sistema Aquífero Pré-Cambriano

4 IMPLANTAÇÃO DA REDE DE MONITORAMENTO

No cenário das últimas décadas, onde a demanda por água potável cresce rapidamente, a avaliação constante da qualidade das águas subterrâneas se torna imprescindível, visto a necessidade de conservação e uso estratégico desse recurso.

O monitoramento sistemático da qualidade da áqua subterrânea fornece informações que permitem ao órgão ambiental: caracterizar as águas subterrâneas brutas, informando as condições e características químicas da áqua; avaliar as tendências das concentrações das substâncias monitoradas; identificar áreas alterações com qualidade; subsidiar as ações de prevenção e controle da poluição do solo e da áqua subterrânea; avaliar a eficácia dessas ações ao longo do tempo; subsidiar as ações de gestão da qualidade do recurso hídrico subterrâneo junto aos Comitês de Bacias Hidrográficas; subsídios dar definição dos Valores de Referência de Qualidade (VRQ's) para cada substância de interesse, por aquifero; e, subsidiar classificação dos aquíferos, visando enquadramento, de acordo com a Resolução Conama n. 396, de 3 de abril de 2008.

O monitoramento da quantidade da água subterrânea, por sua vez, auxilia no conhecimento de impactos em decorrência do uso da água e das formas de ocupação dos terrenos; do volume ideal para extração das águas subterrâneas para que o uso atual não promova interferências significativas nas reservas de modo a comprometer a utilização futura desse recurso.

A utilização da água subterrânea condiciona-se não somente ao potencial de explotação dos aquíferos, mas também às condições climáticas, aos aspectos de uso e ocupação dos terrenos, e ao nível de atendimento das populações às medidas de saneamento básico e demais usos.

Destaca-se, que, no Mato Grosso do Sul, a grande maioria dos municípios, principalmente no interior do estado, utilizam as águas subterrâneas como recurso hídrico principal ou único para o abastecimento público de água.

monitoramento contínuo da áqua subterrânea constitui, portanto, procedimento de grande importância para a gestão dos recursos hídricos subterrâneos, proporciona uma reunião pois informações qualitativas e quantitativas que permite, dentre outros, avaliar os possíveis impactos das atividades antrópicas nos sistemas aquíferos.

4.1 METODOLOGIA ADOTADA

Geralmente, nos programas de dados analíticos monitoramento os utilizados são aqueles provenientes de poços tubulares existentes (cedidos), poços tubulares construídos, nascentes, е selecionados de forma a abranger os diferentes aquíferos, em suas diversas áreas e formas de ocorrência.

O Cadastro Estadual de Usuários de Recursos Hídricos operacionalizado pelo Imasul possui até 2022, 4.479 poços registrados. Destes, cerca de 74% estão regularizados e 26% em processo de regularização pelo Instituto.

Dentro desse horizonte de poços registrados, buscou-se selecionar um grupo que pudesse ser utilizado para fornecer as informações necessárias para se estabelecera situação de qualidade das águas subterrâneas estaduais, além da caracterização dos aquíferos.

Dessa forma, a Rede Estadual de Monitoramento do Mato Grosso do Sul vem sendo constituída por poços existentes, cadastrados, operados pelas empresas de abastecimento público do Estado, e utilizados para produção de água.

Os resultados das análises laboratoriais realizadas nos programas de poços compõem o monitoramento desses banco de dados do Programa Monitoramento que teve inicio em 2021, com a publicação pelo Imasul, do Relatório de Implantação da Rede de monitoramento. No presente relatório serão utilizados os dados referentes ao monitoramento realizado nos anos de 2020, 2021 e 2022.

A frequência a ser mantida para a publicação dos próximos relatórios será bianual, em atendimento ao previsto na Lei Estadual de Recursos Hídricos (Lei Estadual n. 2.406, de 29 de janeiro de 2002).

4.2 SELEÇÃO DOS PONTOS DE AMOSTRAGEM

Para a seleção dos pontos de amostragem, foram adotados alguns critérios, além dos já citados, para utilização dos poços, e que deverão ser cumpridos concomitantemente:

- a) poços outorgados;
- b) poços com finalidade de abastecimento público;
- c) poços com explotação somente de um sistema aquífero.

Para a elaboração do presente relatório foi realizada uma avaliação da rede, a fim de detectar a necessidade de inclusão e/ou exclusão de pontos de monitoramento. A análise individualizada dos poços indicou

que alguns deixaram de atender aos critérios mínimos exigidos por razões diversas como: não renovação da outorga, substituição do poço, etc. Por outro lado novos poços foram incorporados, pois passaram a a atender aos critérios estabelecidos. Dessa forma, com a Rede de Monitoramento passou a contar 86 poços, distribuídos em sete aquíferos.

Novos poços que se enquadrarem nos critérios, poderão ser incorporados à Rede, de modo que a distribuição e densidade sejam cada vez mais suficientes para obtenção de valores representativos das condições hidrogeológica e reflitam a intensidade do uso da água, as formas de ocupação do solo, a densidade demográfica e a extensão regional do aquífero. Nascentes e fontes de água mineral também poderão, no futuro, fazer parte da Rede.

Os poços monitorados encontram-se distribuídos no território do Estado, abrangendo dez das 15 UPGs do MS e sete diferentes aquíferos (Figura 29).

SISTEMA AQUÍFERO X UPG											
	SAB	SASG	SAG	SAAP	SAF	SAPCC	SAP				
IGUATEMI	\checkmark										
AMAMBAI		\checkmark	\checkmark								
IVINHEMA	\checkmark	\checkmark	\checkmark								
PARDO	\checkmark	\checkmark	\checkmark								
VERDE	\checkmark										
SUCURIU	\checkmark	\checkmark									
APORÉ	\checkmark										
TAQUARI				\checkmark	\checkmark						
MIRANDA				\checkmark		1	1				
APA		\checkmark									

Figura 29 - Pontos de Monitoramento - Aquífero x UPG

A figura 30 apresenta a distribuição dos pontos da Rede de Monitoramento de Qualidade das Águas Subterrâneas por sistema aquífero no MS; A figura 31 apresenta os pontos de monitoramento por municípios e o respectivo aquífero explotado.

Figura 30 - Distribuição dos pontos de monitoramento

Figura 31- Pontos de monitoramento por município

4.3 SELEÇÃO DOS PARÂMETROS MONITORADOS

subterrâneas As áquas possuem características químicas estreitamente correlacionadas às rochas que por onde percolam. A armazenam e qualidade dessas águas, por outro lado, pode ser influenciada pela atividade antropogênica, que é a fonte de cargas poluidoras pontuais de origem doméstica ou industrial e pelas cargas difusas urbanas e rurais.

Dando continuidade ao processo de monitoramento, estão sendo monitorados, alguns parâmetros indicativos de qualidade da água dos aquíferos explotados pelas empresas concessionárias de abastecimento público (Empresa de Saneamento de Mato Grosso do Sul/Sanesul e Águas Guariroba S.A.), e o nível estático dos poços

selecionados.

Entre 2020 e 2022 foram realizadas análises da qualidade das águas subterrâneas para os 86 poços tubulares, a cada 6 ou 12 meses.

O Quadro 20 elenca os parâmetros físicos, químicos e biológicos analisados, cujos resultados analíticos foram interpretados e utilizados.

Quadro 20 - Parâmetros analisados

PARÂMETROS

Sólidos Dissolvidos Totais, Turbidez, Nitrato,
Alcalinidade Total, Cloreto, Condutividade Elétrica, Cor
Aparente, Dureza Total, Fluoreto, Nitrogênio,
Nitrogênio Nitrito, pH, Sulfato e as concentrações totais
de Alumínio, Cobre, Crômio, Ferro, Níquel,
Manganês, Sódio, Zinco, Coliformes totais e Escherichia
coli

Paralelamente, estão sendo apresentados, em forma de tabelas, o quantitativo das análises que apresentaram se em desconformidade com os limites estabelecidos Com na legislação. as informações geradas dados pelos analisados, espera-se construir um informativo útil sobre a qualidade da áqua

O valor do terceiro quartil (75%) será

adotado como representativo do conjunto

de amostras, ou seja, da qualidade da áqua

do período analisado, servindo como

diferentes períodos e, futuramente, para a

definição de Valores de Referência de

para

(VRQs)

subterrâneas do Mato Grosso do Sul.

comparação

as

para

entre

águas

referência

Qualidade

4.4 TRATAMENTO DE DADOS

Para o alcance dos objetivos propostos foram utilizados os dados cadastrados no Sistema Imasul de Registros e Informações Estratégicas do Meio Ambiente – Siriema, relativos ao automonitoramento de cada poço selecionado. Os resultados das análises foram digitados em planilhas excel, e tabulados pelo aquífero e pela UPG onde os pontos de monitoramento se localizam.

Os resultados analíticos foram agrupados função dos aquíferos em sistemas monitorados, e também em função das UPGs em que os poços se encontram. Foi realizada uma análise estatística descritiva dos resultados de todos os parâmetros monitorados, fazendo-se uma comparação com os valores legais (Resolução Conama n. 396, de 2018), e a determinação de valores mínimos, valores máximos, medianas, terceiro quartil e porcentagem de valores abaixo de limite de quantificação dos métodos analíticos utilizados.

5 RESULTADOS DO MONITORAMENTO

subterrânea no Estado.

Os resultados analíticos obtidos por meio das campanhas de amostragem estão agrupados em função das UPGs e dos sistemas aquíferos monitorados, e passarão a constituir o banco de dados do monitoramento das águas subterrâneas do Mato Grosso do Sul. Os dados serão tratados e interpretados estatisticamente a cada dois anos, o que corresponde a uma série de quatro resultados analíticos para cada ponto.

De posse dessas informações será possível determinar as características geoquímicas basais das águas, bem como avaliar as variações de qualidade e tendências, comparando-se com os resultados de

campanhas anteriores.

Em 2020,2021 e 2022 foram analisadas 271 amostras de água, cujos resultados foram sistematizados e discutidos nos itens a seguir.

5.1 CARACTERIZAÇÃO HIDROQUÍMICA POR AQUÍFERO

Com os resultados analíticos do conjunto de parâmetros selecionados, pretende-se realizar a caracterização hidroquímica dos sete aquíferos, a partir do cálculo estatístico das concentrações máxima e mínima, mediana e 3º quartil de cada parâmetro.

Contando com a continuidade do Programa de Monitoramento, e com o incremento da série de dados que se tornará mais robusta, será possível também a classificação das águas quanto aos íons dominantes, a ser realizada a partir da construção do Diagrama de Piper.

Durante a análise dos dados foi verificado que os resultados analíticos possuem diferentes Limites de quantificação – LQs, para uma mesma substância.

Isso ocorre porque as análises foram realizadas em laboratórios diferentes, e até no mesmo laboratório, porém em épocas diferentes.

Nesses casos, é comum que ocorram essas diferenças nos valores do LQ dos métodos, em virtude de fatores como os processos de modernização dos métodos analíticos e dos equipamentos de laboratório, que estão sempre em constante renovação.

Nas análises estatísticas dos mínimos, máximos, medianas e terceiros quartis de substâncias com baixas concentrações na água, todos os resultados abaixo do limite de quantificação foram considerados iguais aos valores do LQ para compor a série de dados.

Nos Quadros de número 21 ao 27 encontram-se de forma sintética, os resultados estatísticos dos anos 2020,2021 e 2022 obtidos para todos os parâmetros utilizados para indicar a qualidade das águas subterrâneas, agrupados por aquífero monitorado.

Esses quadros apresentam ainda, os limites estabelecidos pela legislação para cada parâmetro analisado.

Quadro 21 - Síntese dos resultados de	qualidade das áquas subterrâneas	do SAB em 2020, 2021 e 2022.

BAURU													
		20)20			20)21			20	022		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	4,40	7,50	5,40	6,20	4,10	6,70	5,40	5,65	4,60	7,50	5,60	6,15	-
Turbidez	< 0,5	1,00	< 0,5	1,00	< 0,5	1,00	0,50	1,00	< 0,5	1,20	0,63	1,00	
Coliformes Totais		Presença en	n 4 amostras			Presença er	n 2 amostras			Presença e	m 1 amostra		Ausência
E. Coli		Presença e	m 1 amostra				-				-		Ausência
Alcalinidade Total	1,9	255,9	11,5	32,7	4	83,1	20	21,7	4	82,6	20	25,2	
Sulfato	< 2	< 5	< 2	< 5	< 2	< 5	< 2	< 5	< 2	< 5	< 2	4,65	250
Alumínio	< 0,1	0,50	< 0,12	0,12	< 0,1	0,73	< 0,12	< 0,12	0,10	1,18	0,12	0,12	0,2
Cromo Total	< 0,02	< 0,05	< 0,05	< 0,05	< 0,02	< 0,05	0,03	< 0,05	< 0,02	< 0,05	< 0,02	< 0,05	0,05
Cloreto	< 2,3	15,20	< 5	5,93	< 2,3	51,30	< 5	< 5	< 2,3	19,00	5,00	7,75	250
Dureza	5,88	86,80	13,73	26,70	5,00	83,40	11,66	22,90	< 1,1	84,10	10,75	24,13	
Ferro	< 0,04	1,05	< 0,04	< 0,1	< 0,04	0,10	< 0,04	< 0,1	< 0,04	0,62	< 0,04	0,10	0,3
Fluoreto	0,00	0,30	< 0,2	0,20	0,00	< 0,2	< 0,2	0,20	0,00	0,80	< 0,2	< 0,2	1,5
Manganês (Mn)	< 0,01	0,29	0,08	0,10	< 0,01	0,17	< 0,1	< 0,1	< 0,01	0,21	0,07	0,10	0,1
Nitrato	< 0,03	8,30	1,05	5,00	< 0,2	11,80	1,00	5,20	0,23	12,40	1,50	4,65	10
Nitrito	< 0,1	< 0,2	< 0,2	< 0,2	< 0,06	< 0,2	< 0,2	< 0,2	0,06	0,20	0,20	0,20	1
Zinco	< 0,02	1,00	0,04	< 0,1	< 0,02	0,48	0,07	< 0,1	< 0,02	0,16	< 0,02	< 0,1	5
SDT	11,00	320,80	65,50	113,85	10,00	170,60	55,00	104,50	< 1	183,00	60,00	135,50	1000
Condutividade	8,00	373,00	57,00	102,78	6,00	198,40	45,60	95,00	21,00	269,00	54,40	151,80	-
Sódio	1,64	276,00	10,00	12,75	1,00	< 10	< 10	< 10	1,40	10,00	< 10	10,00	200
Cobre	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,070	< 0,02	< 0,02	< 0,02	0,160	< 0,02	0,028	2
Níquel	< 0,016	0,019	< 0,016	< 0,016	< 0,016	0,027	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	0,02

 $Quadro\ 22 - Síntese\ dos\ resultados\ de\ qualidade\ das\ águas\ subterrâneas\ do\ SASG\ em\ 2020,\ 2021\ e\ 2022.$

						SERRA	GERAL						
		20	20			20	21			20)22		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	5,30	8,00	7,00	7,23	5,00	7,80	6,70	7,18	5,10	7,90	6,80	7,20	-
Turbidez	< 0,5	1,74	< 1	< 1	< 0,5	1,95	1,00	1,00	< 0,5	1,50	< 1	< 1	-
Coliformes Totais		Presença en	n 8 amostras			Presença er	n 3 amostras			Presença er	n 3 amostras		Ausência
E. Coli		Presença e	m 1 amostra			Presença e	m 1 amostra				-		Ausência
Alcalinidade Total	6	86,7	57,1	72,5	6	92,0	51	72,4	9	127	59,7	81,4	-
Sulfato	< 2	< 5	< 3,5	< 5	2,00	5,00	5,00	5,00	< 2	< 5	< 5	< 5	250
Alumínio	< 0,1	< 0,12	< 0,1	< 0,12	< 0,1	< 0,12	< 0,1	< 0,12	< 0,05	0,19	< 0,1	< 0,12	0,2
Cromo Total	< 0,02	< 0,05	< 0,05	< 0,05	< 0,02	< 0,05	< 0,05	< 0,05	< 0,02	< 0,05	< 0,05	< 0,05	0,05
Cloreto	< 5	22,70	5,20	7,78	< 2,3	18,30	< 5	< 5	< 2,3	17,60	< 5	< 5	250
Dureza	7,84	130,40	60,00	72,47	7,00	126,20	52,40	77,00	6,00	126,60	53,00	74,88	
Ferro	< 0,04	0,34	< 0,1	< 0,1	< 0,04	< 0,1	< 0,1	< 0,1	< 0,04	0,19	< 0,1	< 0,1	0,3
Fluoreto	0,00	0,80	0,00	< 0,2	0,00	0,30	0,00	< 0,2	0,00	0,20	0,00	0,20	1,5
Manganês (Mn)	< 0,01	< 0,1	< 0,01	< 0,1	< 0,01	< 0,1	< 0,1	< 0,1	< 0,01	< 0,1	< 0,1	< 0,1	0,1
Nitrato	0,03	8,00	1,95	3,00	0,23	9,60	2,35	3,65	< 0,06	10,00	1,00	3,60	10
Nitrito	< 0,1	< 0,2	0,15	< 0,2	< 0,06	< 0,2	< 0,1	< 0,2	< 0,01	0,20	< 0,06	< 0,2	1
Zinco	< 0,02	< 0,1	< 0,1	< 0,1	< 0,02	< 0,1	< 0,1	< 0,1	< 0,02	0,23	< 0,1	< 0,1	5
SDT	4,00	289,80	122,25	144,25	12,00	281,20	109,75	135,80	10,00	247,00	108,00	138,00	1000
Condutividade	10,00	337,00	135,25	160,50	8,00	327,00	119,45	156,53	8,00	339,00	115,60	152,80	
Sódio	3,37	4,09	3,73		1,00	16,00	10,00	10,00	1,00	28,00	10,00	10,50	200
Cobre	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,070	< 0,02	< 0,02	< 0,005	0,070	< 0,02	< 0,02	2
Níquel	< 0,16	0,050	< 0,016	0,025	< 0,016	< 0,016	< 0,016	< 0,016	< 0,005	0,018	< 0,016	< 0,016	0,02

Quadro 23 - Síntese dos resultados de qualidade das águas subterrâneas do SAG em 2020, 2021 e 2022.

						GUA	RANI						
		20	20			20	21			20	022		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	6,00	8,20	7,10	7,90	5,00	7,90	7,00	7,50	5,10	7,90	7,25	7,63	-
Turbidez	< 0,5	1,40	0,55	< 1	< 0,5	1,09	< 0,5	1,00	< 0,5	2,62	0,61	< 1	
Coliformes Totais		Presença en	n 2 amostras			Preseça en	n 1 amostra			Preseça en	n 4 amostras		Ausência
E. Coli			-				-			Preseça er	m 1 amostra		Ausência
Alcalinidade Total	22,2	143,0	53,5	84,2	< 20	117,0	51,7	85,9	< 20	120,2	76,0	88,5	
Sulfato	< 2	< 5	< 2	< 2,3	< 2	< 5	< 2	< 5	< 2	< 5	< 2	< 5	250
Alumínio	< 0,1	< 0,12	< 0,12	< 0,12	< 0,1	< 0,12	< 0,12	< 0,12	< 0,05	< 0,12	< 0,12	< 0,12	0,2
Cromo Total	< 0,02	< 0,05	< 0,02	< 0,05	< 0,02	< 0,05	< 0,02	< 0,05	< 0,02	< 0,05	< 0,02	< 0,05	0,05
Cloreto	2,40	16,80	4,20	5,00	< 2,3	11,10	2,80	5,00	< 2,3	6,70	< 2,3	< 5	250
Dureza	15,60	132,80	51,20	73,60	14,80	123,20	50,97	68,50	13,70	86,70	52,40	60,30	
Ferro	< 0,04	0,10	< 0,04	< 0,04	< 0,04	< 0,1	< 0,04	< 0,1	< 0,04	< 0,1	< 0,04	< 0,1	0,3
Fluoreto	0,00	< 0,2	0,00	< 0,2	0,00	0,30	< 0,2	< 0,2	0,00	0,20	< 0,2	< 0,2	1,5
Manganês (Mn)	< 0,01	< 0,1	< 0,01	< 0,01	< 0,01	< 0,1	< 0,01	< 0,1	< 0,005	< 0,1	< 0,01	< 0,1	0,1
Nitrato	< 0,05	5,60	0,45	1,00	< 0,23	10,10	< 0,3	1,00	< 0,111	14,80	< 0,3	0,75	10
Nitrito	< 0,05	< 0,2	< 0,2	< 0,2	< 0,06	< 0,2	< 0,2	< 0,2	< 0,003	< 0,2	< 0,2	< 0,2	1
Zinco	< 0,02	< 0,2	0,07	< 0,1	< 0,02	0,24	< 0,02	0,10	< 0,005	< 0,1	< 0,02	< 0,1	5
SDT	53,00	245,10	124,20	149,55	56,30	199,50	121,90	150,80	35,00	168,10	98,00	131,25	1000
Condutividade	37,90	285,00	123,95	173,85	17,30	232,00	122,00	175,30	41,30	195,40	128,00	173,40	-
Sódio					< 1	11,00	< 10	< 10	1,34	20,00	< 10	14,00	200
Cobre	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,040	< 0,02	< 0,02	0,009	< 0,05	< 0,02	< 0,02	2
Níguel	< 0,016	0,050	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,01	< 0,05	< 0,016	< 0,019	0,02

Quadro 24 - Síntese dos resultados de qualidade das águas subterrâneas do SAAP em 2020, 2021 e 2022.

					AQUIE	DAUANA	Ponta Gf	ROSSA					
		20	20			20	021			20	022		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	5,20	6,60	6,60	6,60	4,50	6,50	6,30	6,50	5,30	6,90	6,25	6,80	
Turbidez	< 0,5	< 0,5	< 0,5	-	< 0,5	4,95	0,50	4,95	< 0,5	0,57	0,53	0,57	
Coliformes Totais		Presença er	n 1 amostra				-			Presença e	m 1 amostra		Ausência
E. Coli							-				-		Ausência
Alcalinidade Total	25,80	46,30	36,05	-	< 20	41,90	25,30	41,90	< 20	44,70	35,40	44,70	
Sulfato	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	250
Alumínio	< 0,12	2,90	< 0,12	2,90	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	0,2
Cromo Total	< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,05
Cloreto	3,30	5,40	4,80	5,40	< 2,3	< 2,3	< 2,3	< 2,3	< 2,3	< 2,3	< 2,3	< 2,3	250
Dureza	10,00	46,80	17,60	46,80	< 7	44,80	18,60	44,80	< 7	40,70	27,30	40,70	-
Ferro	< 0,04	0,08	< 0,04	0,08	< 0,04	0,43	< 0,04	0,43	< 0,04	0,16	< 0,04	0,16	0,3
Fluoreto	< 0,2	< 0,2	< 0,2		< 0,2	0,30	< 0,2	0,30	< 0,2	0,30	< 0,2	0,30	1,5
Manganês (Mn)	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	0,03	< 0,01	0,03	< 0,01	< 0,01	< 0,01	< 0,01	0,1
Nitrato	< 0,3	1,10	< 0,3	1,10	< 0,3	1,80	< 0,3	1,80	< 0,3	1,10	0,60	1,05	10
Nitrito	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	0,20	< 0,2	< 0,2	1
Zinco	< 0,02	< 0,02	< 0,02		< 0,02	0,02	< 0,02	< 0,02	< 0,02	0,02	< 0,02	< 0,02	5
SDT	16,80	94,70	90,60	94,70	14,70	91,20	87,40	91,20	30,00	141,00	82,70	136,85	1000
Condutividade	11,00	110,10	59,20	110,10	9,60	106,10	57,10	106,10	51,90	144,60	95,15	136,30	
Sódio					< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	200
Cobre	< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	2
Níquel	< 0,016	< 0,016	< 0,016		< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	0,02

 $Quadro\ 25 - Síntese\ dos\ resultados\ de\ qualidade\ das\ águas\ subterrâneas\ do\ SAF\ em\ 2020,\ 2021\ e\ 2022.$

FURNAS													
		20)20			20	21			20)22		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	5,30	7,30	5,80	7,03	5,40	6,30	5,55	6,13	5,10	6,30	5,85	6,30	-
Turbidez	< 0,5	0,50	< 0,5	0,50	< 0,5	1,10	< 0,5	0,95	< 0,5	2,00	0,68	1,71	-
Coliformes Totais		Presença e	m 1 amostra			Presença e	m 1 amostra			Presença e	m 1 amostra		Ausência
E. Coli		Presença e	m 1 amostra			Presença e	m 1 amostra			Presença e	m 1 amostra		Ausência
Alcalinidade Total	4,30	86,00	20,40	73,48	5,20	85,70	19,00	69,28	< 20	84,50	< 20	68,38	
Sulfato	< 2	9,60	< 2	7,70	< 2	< 2	< 2	< 2	< 2	6,30	< 2	5,23	250
Alumínio	< 0,12	< 0,12	< 0,12		< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	0,2
Cromo Total	< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,05
Cloreto	2,80	11,50	4,95	10,00	< 2,3	8,10	< 2,3	8,10	< 2,3	6,80	< 2,3	5,68	250
Dureza	< 7	53,60	22,80	47,70	11,80	52,40	24,30	47,30	7,40	48,10	19,00	40,98	-
Ferro	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	0,14	< 0,04	0,12	0,3
Fluoreto	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	0,20	0,20	0,20	< 0,2	0,20	< 0,2	0,20	1,5
Manganês (Mn)	< 0,01	0,26	< 0,01	0,20	< 0,01	0,27	< 0,01	0,27	< 0,01	0,29	0,02	0,22	0,1
Nitrato	< 0,3	3,30	0,35	2,58	< 0,3	3,70	1,05	3,20	< 0,3	4,60	0,70	3,73	10
Nitrito	< 0,2	0,20	0,20	0,20	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	1
Zinco	< 0,02	0,03	0,03		< 0,02	0,03	< 0,02	0,03	< 0,2	0,02	< 0,2	0,02	5
SDT	21,10	172,90	108,85	165,70	23,10	166,20	57,75	143,20	5,00	145,40	82,75	132,80	1000
Condutividade Sódio	13,80	201,00	71,15	174,30	15,10 < 10	193,20 < 10	72,75 < 10	169,15 < 10	14,80 < 10	177,50 < 10	70,55 < 10	156,88 < 10	- 200
Cobre	< 0,02	< 0.02	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.040	< 0.02	0.035	200
Níquel	< 0,02	< 0,02	< 0,016		< 0,02	< 0,02	< 0,016	< 0,02	< 0,02	< 0,016	< 0,02	< 0,033	0,02

Quadro 26 - Síntese dos resultados de qualidade das águas subterrâneas do SAPCC em 2020, 2021 e 2022.

PRÉ CAMBRIANO CÁLCARIO													
		20	20			20	21			20	022		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
pН	6,80	7,20	7,10	7,15	5,00	7,00	6,70	6,90	6,90	7,30	7,10	7,20	-
Turbidez	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	0,60	< 0,5	0,55	< 0,5	1,79	< 0,5	1,59	-
Coliformes Totais		Presença en	n 2 amostras			Presença en	n 3 amostras			Presença er	m 5 amostras		Ausência
E. Coli		Presença en	n 2 amostras				-			Presença er	m 2 amostras		Ausência
Alcalinidade Total	270,6	351,0	342,4	350,1	216,4	337,1	276,4	337,1	219,4	357,1	300,5	357,10	-
Sulfato	< 2	12,60	2,90	8,30	< 2	13,50	< 2	13,50	< 2	< 2	< 2	< 2	250
Alumínio	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	< 0,12	0,2
Cromo Total	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,05
Cloreto	6,90	14,40	9,90	13,30	< 2,3	17,10	2,30	17,10	< 2,3	7,20	3,70	7,20	250
Dureza	295,60	394,00	363,20	384,40	244,30	404,60	300,30	404,60	233,10	343,90	302,40	343,90	
Ferro	< 0,04	0,13	< 0,04	0,09	< 0,04	0,08	< 0,04	0,07	0,06	0,10	0,07	0,10	0,3
Fluoreto	< 0,2	0,30	< 0,2	0,30	< 0,2	0,20	0,20	0,20	< 0,2	0,30	< 0,2	0,25	1,5
Manganês (Mn)	0,01	0,22	0,02	0,12	0,01	0,02	0,01	0,02	< 0,01	0,09	0,05	0,09	0,1
Nitrato	< 0,3	2,40	1,60	2,10	< 0,3	5,00	1,10	3,40	0,70	5,40	1,90	4,65	10
Nitrito	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	0,20	0,20	0,20	< 0,2	< 0,2	< 0,2	< 0,2	1
Zinco	< 0,02	0,05	0,03	0,05	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	5
SDT	462,70	630,40	565,00	600,30	361,20	644,10	520,30	592,10	283,00	653,50	373,00	596,35	1000
Condutividade	538,00	733,00	657,00	698,00	420,00	749,00	605,00	688,50	445,00	725,00	627,00	716,00	-
Sódio					< 10	12,00	< 10	12,00	< 10	< 10	< 10		200
Cobre	< 0,02	0,110	0,020	0,110	< 0,02	0,120	< 0,02	0,105	< 0,02	0,050	< 0,02	0,040	2
Níquel	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	< 0,016	0,02

Quadro 27 - Síntese dos resultados de qualidade das águas subterrâneas do SAP em 2020, 2021 e 2022.

						PRÉ CAN	/BRIANO						
		20	20			20)21			20	022		
Parâmetros	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	Valor Mínimo	Valor Máximo	Mediana	3º Quartil	CONAMA Resolução 396/2008
рН	6,80	7,60	7,20		5,90	6,90	6,20	6,90	6,20	7,10	6,30	7,10	
Turbidez	< 0,5	< 0,5	< 0,5		< 0,5	0,54	0,52		< 0,5	0,65	< 0,5	0,65	
Coliformes Totais		Presença er	m 1 amostra			Presença er	n 3 amostras			Presença er	m 3 amostras		Ausência
E. Coli			-				-			Presença e	m 1 amostra		Ausência
Alcalinidade Total	163,00	268,70	215,85		71,90	273,10	156,70	273,10	82,40	82,60	82,50		-
Sulfato	4,40	5,30	4,85		< 2	3,60	< 2	3,60	3,60	3,60	3,60		250
Alumínio	< 0,12	< 0,12	< 0,12		< 0,12	< 0,12	< 0,12		< 0,12	< 0,12	< 0,12		0,2
Cromo Total	< 0,02	0,02	0,02		< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02	< 0,02	0,05
Cloreto	6,70	20,20	13,45		< 2,3	20,20	9,20	20,20	8,00	8,20	8,10		250
Dureza	182,40	286,00	234,20		86,00	293,10	179,10	293,10	84,10	84,90	84,50		-
Ferro	< 0,04	< 0,04	< 0,04		< 0,04	< 0,04	< 0,04	< 0,04	< 0,04	0,04	0,04		0,3
Fluoreto	< 0,2	0,20	0,20		< 0,2	0,40	0,30	0,40	0,30	0,30	0,30	0,30	1,5
Manganês (Mn)	< 0,01	0,01	0,01		0,01	0,02	0,02		0,01	0,01	0,01	-	0,1
Nitrato	0,50	2,40	1,45		0,60	3,70	3,30	3,70	0,90	6,20	5,50	6,20	10
Nitrito	< 0,2	< 0,2	< 0,2		< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	1
Zinco	< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02		< 0,02	< 0,02	< 0,02		5
SDT	360,30	446,30	403,30		183,60	450,60	345,70	450,60	183,00	199,00	191,00		1000
Condutividade	419,00	519,00	469,00		213,50	524,00	419,00	524,00	223,00	531,00	224,00		-
Sódio					< 10	13,00	< 10	13,00					200
Cobre	< 0,02	< 0,02	< 0,02		< 0,02	0,030	0,025		< 0,02	< 0,02	< 0,02	< 0,02	2
Níquel	< 0,016	< 0,016	< 0,016		< 0,016	< 0,016	< 0,016		< 0,016	< 0,016	< 0,016		0,02

RESULTADOS 6 DESCONFORMES DE ACORDO COM OS LIMITES LEGAIS

O instrumento legal utilizado para avaliar a qualidade das águas subterrâneas foi a Resolução Conama n. 396 de 2008, em seu Anexo I, que apresenta a lista de parâmetros com maior probabilidade de ocorrência em águas subterrâneas e seus respectivos Valores Máximos Permitidos (VMP). Nesse caso, para efeito de comparação foram utilizados os limites definidos para consumo humano.

No período compreendido entre os anos de 2020, 2021 e 2022, as campanhas de coleta foram anuais, ou seja, cada um dos 86 poços da Rede de Monitoramento foi visitado de uma a duas vezes e alguns desses poços, tiveram uma campanha de coleta adicional. Dessa forma, ao final do período, foram realizadas 271 campanhas de coleta. Em cada uma dessas análises, foram avaliados, em média, 20 diferentes parâmetros de monitoramento.

Das 271 amostras coletadas e analisadas, 205 amostras (75,65%) respeitaram os Valores Máximos Permitidos (VMP) estabelecidos no Anexo I da Resolução Conama n. 396, de 2008 para todos os parâmetros analisados. Por outro lado, 66 amostras (24.35 %) apresentaram concentrações em desconformidade com a referida norma em um ou mais parâmetros.

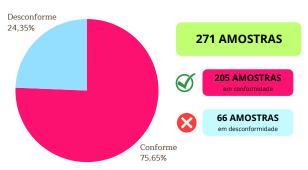


Figura 32 - Resultado das Análises

Os resultados do monitoramento no período de 2020 a 2022 estão organizados neste capítulo e apresentados de forma sintética por meio de quadros.

6.1 RESULTADOS DESCONFORMES AGRUPADOS POR UPG

A avaliação da qualidade das águas subterrâneas no período de 2020, 2021 e 2022, considerou as 15 Unidades de Planejamento e Gerenciamento (UPGs) do Mato Grosso do Sul, estabelecidas no Plano Estadual de Recursos Hídricos.

Das 15 UPGs do Estado, dez estão inseridas na Rede Estadual de Monitoramento, e possuem pelo menos um ponto de amostragem: as UPGs Iguatemi, Amambai, Ivinhema, Pardo, Verde e Sucuriú – todas localizadas na Região Hidrográfica do Paraná; e as UPGs Aporé, Taquari, Miranda e Apa, localizadas na Região Hidrográfica do Paraguai (Figura 33).

Figura 33 - UPG x Ponto de monitoramento

Em todas as UPGs monitoradas foram verificadas desconformidades na avaliação dos parâmetros analisados; as UPGs Apa, Iguatemi e Aporé apresentaram as

menores frequências de desconformidades.

Os poços que apresentaram algum parâmetro com concentrações superiores aos limites estabelecidos estão relacionados no Quadro 28, juntamente com as informações do município de localização, o aquífero e os respectivos parâmetros desconformes, por ano de monitoramento.

Quadro 28 - Resultados não conformes em relação aos padrões nacionais de qualidade, por UPG em 2020 a 2022

UPG	PONTO	AQUÍFERO	PARÂMETRO	DESCON	FORMIDA ANO	DES POR
				2020	2021	2022
	ARM-001	SASG	Coliformes Totais	X		
	VMQ-001	SASG	Coliformes Totais		Х	
	AAAA 002	SAG	Coliformes Totais	X		
Amambai	AMA-002	SAG	Nitrato		Х	
	AMA-012	SAG	Níquel	х		
	AMA-011	SAG	Coliformes Totais			Х
Apa	ANJ-003	SASG	Coliformes Totais	X	х	Х
Iguatemi	MUN-002	SAB	Coliformes Totais		х	
	ANJ-001	SASG	Coliformes Totais	Х		
			Coliformes Totais	Х	х	
	PNP-016	SASG	E. coli	х	х	
			Ferro	X		
			Coliformes Totais	x		
		SASG	Níquel	х		
Ivinhema			Coliformes Totais	х		
	NHZ-004	SAB	E. coli	Х		
			Coliformes Totais	X	S/D	S/D
	VSJ-002	SAB	Ferro	х	S/D	S/D
			Manganês	х	S/D	S/D
	DOI! 020		Coliformes Totais			Х
	DOU-036	SAG	E. coli			Х
	220 224	24.500	Coliformes Totais			Х
	BDQ-001	SAPCC	E. coli			Х
	222.005	645	Coliformes Totais	X	Х	Х
	BDQ-006	SAP	E. coli			Х
Miranda	DC:: 2	6.1.7.	Coliformes Totais	Х	Х	Х
	BON-003	SAPCC	E. coli	Х		
	BON-004	SAPCC	Coliformes Totais			Х
	DOM OOC	CARCC	Coliformes Totais		Х	Х
	BON-006	SAPCC	E. coli			х

UPG	PONTO	AQUÍFERO	PARÂMETRO	DESCON	FORMIDA ANO	DES POR
				2020	2021	2022
	NIO-009	SAAP	Coliformes Totais		X	X
	TAU-004	SAP	Coliformes Totais		X	X
Miranda	TAU-002	SAP	Coliformes Totais	S/D	X	Х
iviii ai iua			Coliformes Totais	Х	X	Х
	BON-001	SAPCC	E. coli	X		
			Manganês	X		
	TI C 027		Coliformes Totais	X		
Sucuriu	TLG-027	SAB	Manganês		Х	
	SEV-002	SASG	Coliformes Totais	X		
			Coliformes Totais	X		
	ALC-005	SAG	Nitrato			Х
	CAM-011	SAG	Coliformes Totais		х	
	FIG-006	SAG	Coliformes Totais			х
	CAM-018	SAG	Coliformes Totais			х
Taquari	COX-002	SAF	Manganês	х	Х	х
			Alumínio	x		
	ALP-001	SAAP	Ferro		Х	
			Coliformes Totais	х	X	X
	SRO-002	SAF	E. coli	х	X	X
	AGC-001	SAB	Coliformes Totais	х		
			Alumínio	х	Х	
	AGC-003	SAB	Manganês		Х	
			Nitrato		Х	Х
			Alumínio			Х
Verde	AGC-006	SAB	Ferro			X
			Manganês			Х
			Alumínio	х	Х	
	AGC-005	SAB	Manganês	х	Х	
	BRA-005	SAB	Manganês	Х		
	CGR-018	SASG	Coliformes Totais	х		
	CGR-210	SASG	Coliformes Totais	X		Х
	CGR-277	SASG	Coliformes Totais			X
Pardo	NPQ-002	CAD	Coliformes Totais		Х	
Taruo	NF Q-002	SAB	Níquel		Х	
	CCD 107		Alumínio	X		
	CGR-197	SAB	Manganês	X		

RESULTADOS 6.2 DESCONFORMES AGRUPADOS POR SISTEMA AQUÍFERO

A avaliação da qualidade das águas tendo como unidade de análise os aquíferos monitorados, indica que foram verificadas desconformidades nas amostras de todos os aquíferos analisados.

O sistema aquífero que mais apresentou análises desconformes em percentual, foi o aquífero Pré-Cambriano, que, dentre as 8 análises realizadas, em 7 análises pelo menos um parâmetro apresentou desconformidade. A seguir, vem o aquífero Pré- Cambriano Calcários com 10 análises apresentando alguma desconformidade em um total de 15 análises. O aquífero Furnas, vem a seguir, com seis de um total de 12. Em seguida, vem os sistemas aquíferos Aquidauana Ponta Grossa, Bauru, Guarani e Serra Geral (Quadro 29).

Quadro 29 - Totalização das análises por sistema aquífero entre 2020 a 2022

entre 2020 à 2022										
SISTEMA AQUÍFERO	TOTAL DE ANÁLISES	ANÁLISES DESCONFORMES	DESCONFORMIDADES (%)							
Pré-Cambriano Calcários	15	10	66,67%							
Pré-Cambriano	8	7	87,50%							
Furnas	12	6	50,00%							
Aquidauana Ponta- Grossa	10	4	40,00%							
Bauru	75	15	20,00%							
Guarani	59	10	16,95%							
Serra Geral	92	14	15,22%							
TOTAL	271	66	24,35%							

O estudo individualizado dos parâmetros avaliados na Rede nos indica que, no período considerado, foram executados 5.064 análises laboratoriais, sendo que, dentre os resultados obtidos, em apenas 91 vezes (1,80%) a leitura dos resultados analíticos apontou para valores superiores aos limites estabelecidos na legislação. Esses dados estão detalhados no Quadro 30.

Quadro 30 - Totalização dos parâmetros por sistema aquífero

SISTEMA AQUÍFERO	N° DE PARÂMETROS ANALISADOS	PARÂMETROS DESCONFORMES	DESCONFORMIDADES (%)
Pré-Cambriano- Calcários	1434	26	5,64%
Pré-Cambriano	1681	18	5,48%
Furnas	1116	11	3,86%
Aquidauana Ponta- Grossa	188	4	2,13%
Bauru	233	9	1,81%
Serra Geral	266	15	1,07%
Guarani	146	8	0,99%
TOTAL	5064	91	1,80%

O monitoramento da qualidade das águas apontou subterrâneas amostras não conformes em relação padrões aos estabelecidos pela Resolução Conama n. 396, de 2008, para os parâmetros: Alumínio, Ferro, Manganês, Nitrato e Níquel, além da presença de Coliformes e Escherichia Totais coli (Quadro 31).

Quadro 31 - Parâmetros com resultados não conformes entre 2020 a 2022

PARÂMETRO	TOTAL DE ANÁLISES	ANÁLISES DESCONFORMES	DESCONFORMIDADES (%)
Coliformes Totais	267	49	18,35%
Manganês	252	12	4,76%
E. coli	267	12	4,49%
Alumínio	238	7	2,94%
Níquel	154	3	1,95%
Ferro	257	4	1,56%
Nitrato	258	4	1,55%
TOTAL	1832	91	5,38%

Considerando que a Rede de Monitoramento é composta por poços destinados ao abastecimento público, cabe aqui utilizar os padrões de potabilidade definidos na legislação nacional por meio dos Anexos 9 a 11 da Portaria GM/MS n. 888, de 4 de maio de 2021, do Ministério da Saúde.

Para os elementos Alumínio, Ferro, Nitrato e Manganês, os limites máximos permitidos se igualam aos estabelecidos na Resolução Conama n. 396, de 2008, e se referem à aceitação da água ao consumo humano, estabelecido para características

organolépticas (gosto, cor e odor) e, portanto, não representam risco à saúde humana.

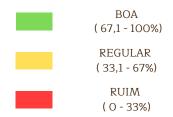
Com relação ao Níquel, a mesma Portaria define como limite máximo permitido, o valor de 0,07mg/L, ou seja, os valores encontrados no monitoramento (0,027 mg/L em uma amostra no SAB, 0,05mg/L em uma amostra no SAG e 0,05mg/L em uma amostra no SASG), estão abaixo do limite máximo para os padrões potabilidade. Em relação aos parâmetros microbiológicos, Coliformes Totais foram os mais presentes nas amostras analisadas, seguido Escherichia coli por numa frequência 18,35% 4,49% de respectivamente.

7 INDICADOR DE POTABILIDADE

A presença de Coliformes Totais e *E. coli* na água bruta (antes de qualquer tratamento) pode estar associada a questões sanitárias na área imediata dos poços, ressaltando-se que essa presença não se estende pelo aquífero, uma vez que esse parâmetro possui tempo de vida relativamente curto em água.

Vale observar que tais parâmetros são eliminados da facilmente áqua por através maioria tratamento da dos processos de desinfeção química (p. ex. cloro, cloro, ozônio dióxido de cloraminação) e física (p. Ex. ultravioleta, ultrafiltração e filtração rápida), processos estes, que já são realizados concessionárias de abastecimento de áqua, as quais são obrigadas legalmente a servir a

água já dentro de todos os padrões de potabilidade.


A utilização de um indicador é importante quando se tem o objetivo de agregar e quantificar as informações geradas no processo de monitoramento, melhorando a comunicação dos resultados, além de antecipar futuras condições e tendências.

própria potabilidade das áquas subterrâneas brutas é um dos indicadores de qualidade e qualquer desconformidade representa a necessidade de tratamentos adicionais da áqua, além da cloração, que as concessionárias departamentos ou municipais responsáveis abastecimento público de áquas devem garantir antes de sua distribuição para consumo humano (Cetesb, 2019).

Dessa forma, sendo adotado o está Potabilidade Indicador de das Subterrâneas (Ipas) instituído e adotado pela Cetesb-SP desde 2009, que, assim como o Imasul, também opera uma Rede constituída basicamente por utilizados para abastecimento público de água.

O Indicador de Potabilidade das Águas representa Subterrâneas **Ipas** de percentual das amostras áquas subterrâneas em conformidade com os padrões de potabilidade para substâncias que representam risco à saúde e o padrão organoléptico, estabelecidos por meio da Portaria GM/MS n. 888 de 4 de maio de 2021, do Ministério da Saúde, e representa de forma genérica, a qualidade das águas captadas em poços tubulares utilizados principalmente para abastecimento Ο público.

O indicador foi dividido em três classes para orientar a avaliação da qualidade das águas, e recebeu um correspondente nas cores verde, amarelo e vermelho:

O Indicador de Potabilidade das Águas Subterrâneas/Ipas foi calculado para as UPGs e para os sistemas aquíferos do Estado. Os Ipas calculados por UPG e sistemas aquíferos são apresentados nos Quadros 32 e 33, respectivamente.

Quadro 32 - Indicador de Potabilidade das Águas Subterrâneas - Ipas por UPG

		2020		2021		2022
UPG	IPAS (%)	PARÂMETROS DESCONFORMES	IPAS (%)	PARÂMETROS DESCONFORMES	IPAS (%)	PARÂMETROS DESCONFORMES
Amambai	71	Coliformes Totais	89	Coliformes Totais e Nitrato	89	Coliformes Totais
Apa	0	Coliformes Totais	0	Coliformes Totais	0	Coliformes Totais
Iguatemi	100	-	0	Coliformes Totais	100	-
Ivinhema	62	Coliformes Totais, Ferro, Manganês e <i>E. coli</i>	88	Coliformes Totais, Níquel e <i>E. coli</i>	85	Coliformes Totais
Miranda	56	Coliformes Totais, E. coli	40	Coliformes Totais	20	Coliformes Totais, <i>E. coli</i>
Pardo	90	Coliformes Totais, Alumínio e Manganês	98	Coliformes Totais e Níquel	95	Coliformes Totais
Sucuriú	33	Coliformes Totais	67	Manganês	100	Manganês
Verde	33	Coliformes Totais, Alumínio e Manganês	50	Coliformes Totais, Alumínio , Manganês e Nitrato	83	Alumínio, Ferro Manganês e Nitrato
Taquari	64	Coliformes Totais, <i>E. coli,</i> Manganês e Aluminío	64	Coliformes Totais, <i>E. coli,</i> Manganês e Ferro	55	Coliformes Totais, <i>E. coli</i> , Manganês e Nitrato
Estado MS		70%		78%		78%

Quadro 33 - Indicador de Potabilidade das Águas Subterrâneas - Ipas por sistema aquífero

	2020		2021		2022	
AQUÍFERO	IPAS (%)	PARÂMETROS DESCONFORMES	IPAS (%)	PARÂMETROS DESCONFORMES	IPAS (%)	PARÂMETROS DESCONFORMES
Pré-Cambriano	50	Coliformes Totais	0	Coliformes Totais	0	Coliformes Totais, <i>E. coli</i>
Furnas	50	Coliformes Totais, <i>E. coli e</i> <i>Manganês</i>	50	Coliformes Totais, <i>E. coli e</i> <i>Manganês</i>	50	Coliformes Totais, <i>E. coli e</i> <i>Manganês</i>
Pré-Cambriano Calcário	60	Coliformes Totais, <i>E. coli e</i> <i>Manganês</i>	40	Coliformes Totais	0	Coliformes Totais, E. coli
Aquidauana - Ponta Grossa	33	Coliformes Totais e Alumínio	67	Ferro	75	Coliformes Totais
Serra Geral	71	Coliformes Totais, E. coli, Ferro e Níquel	91	Coliformes Totais, <i>E. coli</i> <i>e Níquel</i>	90	Coliformes Totais
Bauru	68	Coliformes Totais, E. coli, Alumínio, Ferro e Manganês	76	Coliformes Totais, Alumínio, Manganês, Nitrato e Níquel	96	Alumínio, Ferro, Manganês e Nitrato
Guarani	82	Coliformes Totais e Níquel	90	Coliformes Totais e Nitrato	76	Coliformes Totais, <i>E. coli e</i> <i>Nitrato</i>
Estado MS		69%		78%		78%

A conformidade das amostras em relação aos padrões legais brasileiros foi verificada em 205 amostras das 271 amostras coletadas. As demais (66) tiveram resultados de um ou mais parâmetros acima desses padrões.

O Ipas calculado para o Mato Grosso do Sul foi de 69% em 2020, 78% em 2021 e 78% em 2022; todos os percentuais representam a classe BOA de qualidade das águas subterrâneas. É importante salientar que esse indicador reflete a qualidade das águas

brutas em relação aos padrões nacionais de potabilidade definidos pelo Ministério da Saúde. O tratamento dos parâmetros microbiológicos pode ser feito de forma convencional, ou seja, a remoção por cloração da água.

8 CONSIDERAÇÕES FINAIS

O monitoramento qualitativo das águas subterrâneas tem papel essencial tanto no apoio à gestão dos recursos hídricos, quanto na gestão ambiental. O presente relatório da continuidade a rede de monitoramento da qualidade das águas subterrâneas no Mato Grosso do Sul, cumprindo, forma dessa uma das atribuições do órgão ambiental estadual, ao informar, aos diversos públicos interessados, a variação temporal e espacial da qualidade da água ao longo de sua explotação. Essa atividade se mantém a partir da operacionalização de uma Rede de Monitoramento composta atualmente por 86 pontos, que correspondem a 86 poços de captação subterrânea outorgados e cadastrados no sistema Siriema do Imasul.

Todos os poços selecionados para integrar a Rede de Monitoramento são operacionalizados pelas concessionárias de abastecimento de água e saneamento, têm como finalidade de uso, a captação para abastecimento público e, sua explotação ocorre em somente um sistema aquífero.

A Rede de Monitoramento se consolida com um expressivo número de pontos, por meio dos quais, estão contemplados sete dos oito aquíferos presentes no território do MS. Pretende- se que, com a continuidade do Programa de Monitoramento, novos pontos sejam integrados à Rede, tornando cada vez mais robusta a sua configuração. Neste relatório da Rede de Monitoramento, foram dados considerados os oriundos do automonitoramento dos poços, 2020, 2021 e 2022. anos de nos

Com relação à qualidade das águas subterrâneas, a avaliação dos valores obtidos nas análises laboratoriais de 22 diferentes parâmetros, aponta para uma água de boa qualidade. Considerando os Permitidos Valores Máximos (VMP) estabelecidos no Anexo I da Resolução Conama n. 396, de 2008, das 271 amostras coletadas e analisadas, 205 amostras (75,65%)respeitaram os limites estabelecidos em todos os parâmetros analisados. Por outro lado, 66 amostras (24,35%) apresentaram concentrações em desconformidade com a referida norma em um ou mais parâmetros.

A partir de uma individualizado dos parâmetros avaliados na Rede nos indica que, no período considerado, foram executados 5.064 análises laboratoriais, sendo que, dentre os resultados obtidos, em apenas 91 vezes (1,80%) a leitura dos resultados analíticos apontou para valores superiores aos limites estabelecidos na legislação.

Os parâmetros que apresentaram concentrações superiores aos limites estabelecidos pela Resolução Conama n. 396, de 2008, foram: Alumínio, Ferro, Manganês, Nitrato e Níquel, além da presença de Coliformes Totais e *Escherichia coli*.

Para os elementos Alumínio, Ferro, Nitrato e Manganês, os limites máximos permitidos se igualam aos estabelecidos na Portaria de Consolidação n. 888, de 4 de maio de2021 do Ministério da Saúde, e se referem

somente à aceitação da água ao consumo humano, estabelecido para características organolépticas (gosto, cor e odor), não representando, portanto, risco à saúde humana. Com relação ao Níquel, no que diz respeito aos padrões de potabilidade, os valores encontrados no monitoramento estão em conformidade com o estabelecido pela Portaria de Consolidação n. 888, de 2021.

parâmetros microbiológicos Coliformes totais e *E. coli* – os resultados estão desconformes geralmente relacionados ao controle sanitário dos poços, sendo que a situação pode ser resolvida com a manutenção preventiva no perímetro imediato de proteção dos poços. Vale destacar que esses parâmetros têm tempo de vida relativamente curto em águas subterrâneas e seu controle é realizado pela adoção do tratamento simples de cloração da água pelos departamentos ou empresas de água responsáveis pelos sistemas públicos de distribuição de água à população (Cetesb, 2020).

Em relação aos contaminantes inorgânicos, o Nitrogênio Nitrato e o Cromo, todos os resultados atenderam aos padrões de potabilidade.

aplicação Ipas (Indicador do Potabilidade das Águas Subterrâneas), índice utilizado pela Cetesb-SP, indica a qualificação BOA tanto para os dados referentes a 2020, quanto para 2021 e 2022. Destacamos que, a utilização do índice ainda pode sofrendo estar interferência pelo pequeno número de dados disponíveis. Com o aumento do banco de dados, teremos uma série histórica mais robusta, que refletirá na maior consistência do índice.

O Imasul está atingindo um importante avanço no monitoramento da qualidade da

áqua subterrânea, graças ao desenvolvimento e instalação do Sigma (Sistema de Gerenciamento Monitoramento Ambiental), desenvolvido pela equipe de TI do Instituto. O Sigma permitirá o cadastramento de todos os dados oriundos dos programas de automonitoramento е identificará automaticamente, caso o dado esteja em desacordo com o padrão legal estabelecido.

9 BIBLIOGRAFIA CONSULTADA

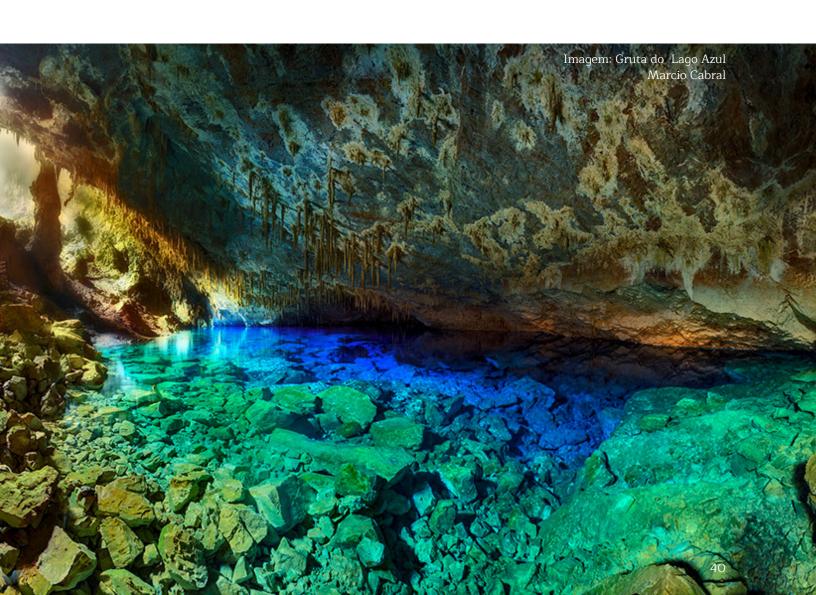
BRASIL. Conama. Resolução n. 396, de 3 de abril de 2008. Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. Diário Oficial da União: República Federativa do Brasil, Poder Executivo, Brasília, DF, v. 145, n. 66, 7 abr. 2008. Seção 1, p. 66-68.

BRASIL. Ministério da Saúde. Gabinete do Ministro. Portaria n. 888, de O4 de maio de 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS n. 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Disponível em: < https://www.in.gov.br/en/web/dou/-/portari a-gm/ms-n-888-de-4-de-maio-de-2021-318461562>.

BRASIL. Ministério das Minas e Energia. CPRM. Projeto "Implantação de Rede Integrada de Monitoramento das Águas Subterrâneas". RECURSOS HIDRICOS Área: Recursos Hídricos Subterrâneos Sub-Área: Levantamento de Recursos Hídricos Subterrâneos. 2009.

BRASIL. Lei n. 9.433, de 8 de janeiro de 1997. D.O.U. 9 jan. 1997.

Cetesb. Relatório de qualidade das águas subterrâneas do estado de São Paulo 2007-2009. São Paulo, 2010. 258 p. (Série Relatórios).


Cetesb (São Paulo) Qualidade das águas subterrâneas no estado de São Paulo 2016-2018 [recurso eletrônico] / Cetesb; Equipe técnica Rosângela Pacini Modesto... [et al.];

Colaboração Blas Marçal Sanchez... [et al.]. - São Paulo : Cetesb, 2019. 1 arquivo de texto (291 p.) : il. color., PDF ; 22 MB. - (Série Relatórios / Cetesb, ISSN 0103

-4103).

Cetesb (São Paulo) Qualidade das águas subterrâneas no estado de São Paulo [recurso eletrônico] / boletim 2019/Cetesb; Equipe técnica Rosângela Pacini Modesto... [et al.] . - São Paulo : Cetesb, 2020. 1 arquivo de texto (92 p.) : il. color., PDF ; 5 MB. Disponível em: https://cetesb.sp.gov.br/aguas-subterraneas/publicacoes-e-relatorios/.

Secretaria de Estado de Meio Ambiente, do Planejamento, da Ciência e Tecnologia e Instituto de Meio Ambiente de Mato Grosso do Sul. Plano Estadual de Recursos Hídricos de Mato Grosso do Sul. Campo Grande-MS: Editora Uems, 2010. 194p.

